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EXECUTIVE SUMMARY 

The Federal Motor Carrier Safety Administration (FMCSA) developed its 2015-2018 strategic plans to 
identify four strategic focus areas, including “Safety 1st” culture and comprehensive data utilization and 
leveraging technology. Compared to crashes occurring in urban areas, traffic crashes in Rural, Isolated, 
Tribal, or Indigenous (RITI) communities are associated with a series of significant attributes, such as 
high speed, low seatbelt usage rate, poor weather and pavement conditions, inferior lighting conditions, 
considerable distractions, etc.  

Recent technological advancements in computer vision algorithms and data acquisition devices have 
greatly facilitated research activities towards enhancing traffic sensing for traffic safety performance 
improvements. Significant research efforts have been devoted to developing and deploying more 
effective technologies to detect, sense, and monitor traffic dynamics and rapidly identify crashes in RITI 
communities.  

As a new modality for 3D scene perception, Light Detection and Ranging (LiDAR) data have gained 
increasing popularity for traffic perception, due to its advantages over conventional RGB data, such as 
being insensitive to varying lighting conditions. In the past decade, researchers and professionals have 
extensively explored LiDAR data to promote traffic perception for transportation research and 
applications, especially in autonomous driving industry.  

Nevertheless, a series of challenges and research gaps continue to exist in the application of LiDAR 
technology, including: 1) the disturbance of adverse weather conditions, where the existence of 
snowflakes and fog particles will significantly deteriorate the quality of LiDAR data and cause data 
outliers and noises in the captured LiDAR point clouds; and 2) the scarcity of roadside LiDAR data for 
deep learning analysis, where few research efforts were devoted to leveraging infrastructure-based 
LiDAR data (e.g., roadside LiDAR) for traffic object recognition tasks; and 3) roadside LiDAR-based 
vehicle trajectory prediction, where it remains a challenge to develop deep learning models for steady 
vehicle trajectory prediction and risk assessment using information extracted from roadside LiDAR data 
and traffic control devices; and 4) performance optimization for vehicle trajectory prediction based on 
roadside LiDAR data and deep learning, which lacks a systematic approach to guide the search for the 
optimal hyperparameter configurations to boost the model performance. 

In this technical report, we focus on addressing the aforementioned research gaps and challenges, by 
proposing a series of methodologies to optimize deep learning-based feature recognition for roadside 
LiDAR-based traffic object recognition tasks. The proposed methodologies will help transportation 
agencies monitor traffic flow, identify crashes, and develop timely countermeasures with improved 
accuracy, efficiency, and robustness, and thus enhance traffic safety in the States of Alaska, Washington, 
Idaho, and Hawaii. 
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CHAPTER 1. INTRODUCTION 

1.1. Problem Statement 

Although Light Detection and Ranging (LiDAR) data have been extensively explored and adopted by 
researchers and professionals for traffic perception and object recognition tasks, a series of challenges 
and research gaps continue to exist, which hinder the further development of LiDAR technology for 
future transportation research and applications (Gargoum and El-Basyouny, 2017, Wu et al., 2020d, Sun 
et al., 2022). The major challenges are summarized as follows: 

● The impact of adverse weather conditions, such as severe snowy weather, could negatively 
affect the quality of the captured LiDAR point clouds, and cause performance deterioration in 
the subsequent feature extraction stage. Existing methods, such as general-purpose 3D noise 
removal methods, are unequipped to process LiDAR data because of the unique characteristics 
of LiDAR data, such as non-uniformity (Charron et al., 2018, Zhou et al., 2024). Therefore, 
additional research efforts need to be devoted to exploring effective methodologies for noise 
removal from LiDAR point clouds.  

● The scarcity of roadside LiDAR data for deep learning analysis may have partially caused the lack 
of research attempts in deep learning-based traffic object recognition using roadside LiDAR 
data. Existing methods are primarily focused on leveraging publicly available autonomous 
driving LiDAR datasets for deep learning network training and testing (Li et al., 2020b), but few 
have explored the feasibility of adopting infrastructure-based LiDAR data (e.g., roadside LiDAR) 
for traffic object recognition tasks (Zhou et al., 2022). 

● It remains a challenge to achieve steady and accurate vehicle trajectory prediction and risk 
assessment, which is due to multiple factors, such as the heterogeneity of pedestrian behavior 
patterns, uncertainties in vehicle-pedestrian interactions, impacts from traffic signals, 
subjectivities in the judgments of “right of way”, and diversity of urban intersections and 
environment (Vizzari et al., 2015, Utriainen, 2020, Tan et al., 2023). In fact, few deep learning-
based methodologies have explored incorporating positional information extracted from 
roadside LiDAR data and signal phasing information extracted from signal control devices to 
promote network performance on both vehicle trajectory prediction and risk assessment. 

● For deep learning-based vehicle trajectory prediction tasks, user expertise or prior knowledge is 
often required upon selecting the network hyperparameters. In fact, there is no exact guideline 
on how to properly configure the network hyperparameters to achieve the optimal performance 
on roadside LiDAR-based vehicle trajectory prediction. Therefore, a systematic framework needs 
to be developed to guide the search for the optimal hyperparameter settings on the network 
architecture and training scheme, thus promoting the network performance on vehicle 
trajectory prediction. 

1.2. Project Overview 

This project is well-aligned with the CSET Year 6 project themes on enhancing vehicle sensing for traffic 
safety and mobility performance improvements using roadside LiDAR sensor data. As part of the 
research efforts, the project team performed sensor instrumentation and acquired roadside LiDAR data 
from multiple signalized road intersections in different cities of the U.S., obtaining 3D point cloud data 
from complex urban traffic scenarios under different weather conditions. Meanwhile, traffic monitoring 
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systems based on LiDAR sensors and regular RGB cameras have been installed at several locations to 
serve future research purposes.  

This research project directly contributes to the collection, retrieval, management, visualization, and 
processing of roadside LiDAR data for transportation research, and it fulfills the demands by CSET on 
enhancing traffic safety in Rural, Isolated, Tribal, or Indigenous (RITI) communities.  

1.3. Research Objectives 

This project aimed to enhance vehicle sensing for traffic safety and mobility performance improvements 
using roadside LiDAR sensor data. To fulfill this overarching goal, the following research topics have 
been investigated through this technical report: 

● Develop an effective analytical method to eliminate data outliers and noises from roadside 
LiDAR data captured under adverse weather conditions. 

● Explore the feasibility of leveraging the domain knowledge of deep learning models trained on 
autonomous driving data for vehicle detection from roadside LiDAR data. 

● Propose a novel deep learning model for vehicle trajectory prediction using positional 
information extracted from roadside LiDAR data and signal timing information. 

● Explore the optimal hyperparameter configuration of deep learning models to boost the 
performance on vehicle trajectory prediction through Bayesian optimization. 

1.4. Report Organization  

The rest of this report is organized as follows. 

Chapter 2 addresses the issue of data outliers and noises existing in roadside LiDAR data caused by 
adverse weather conditions. To account for the non-uniform distribution of LiDAR data, an analytical 
method called Dynamic Channel-wise Outlier Removal (DCOR) is proposed to filter the roadside LiDAR 
data to eliminate noises, such as snowflakes, and preserve critical foreground features. Unlike existing 
methods, the proposed DCOR filter processes the captured roadside LiDAR data in a channel-to-channel 
manner, to decouple the LiDAR data along the vertical axis and reduce data complexity. Meanwhile, 
during outlier removal, the DCOR filter employs a dynamically adjusted search radius upon searching for 
neighboring points. 

Chapter 3 proposes a deep learning-based approach for vehicle object detection from roadside LiDAR 
data. To tackle the issue of scarcity of roadside LiDAR data, we develop a novel framework based on 
CNNs and LiDAR data for automated vehicle detection. It leverages the domain knowledge of CNNs 
trained on large-scale autonomous driving datasets for vehicle detection from roadside LiDAR data. 

In Chapter 4, we propose a deep learning-based method for pedestrian trajectory prediction and risk 
assessment, using trajectory data extracted from roadside LiDAR data and corresponding signal phasing 
information. Meanwhile, a set of criteria referred to as the risk factor is established to quantitatively 
evaluate the risk of the pedestrian crossing behavior, which also serves as a learnable feature. A Long 
Short-Term Memory (LSTM) network is proposed, which takes the following data as the input: the 
pedestrian trajectory data, signal phasing data, and risk factors from the past steps. Meanwhile, the 
network predicts the pedestrian trajectory and risk factor at the future time step. 
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Chapter 5 proposes a LiDAR-based deep learning framework for vehicle trajectory prediction, which 
leverages LSTM networks to predict vehicle trajectories and Bayesian optimization to determine the 
optimal hyperparameter configuration. The optimization scheme is designed such that both the deep 
learning model architecture and its associated training scheme are updated through Bayesian 
optimization. In the experimental study, a vehicle trajectory dataset extracted from roadside LiDAR data 
was utilized for network training and testing. The optimal LSTM network obtained through Bayesian 
optimization was compared against a benchmark LSTM network with handpicked hyperparameters. 

Finally, the research findings from each chapter are summarized in Chapter 6, “Conclusion and 
Recommendations”. Based on the experimental results, we have summarized several research 
outcomes and challenges, to provide insights and prior knowledge for future similar research.  
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CHAPTER 2. DYNAMIC CHANNEL-WISE OUTLIER REMOVAL FILTER TO DE-NOISE LIDAR DATA 
UNDER ADVERSE WEATHER CONDITIONS 

Existing methodologies often assume LiDAR data are acquired under normal weather conditions (Zhou 
et al., 2024). Nevertheless, many researchers have observed that the LiDAR data captured under 
inclement weather are often contaminated with noises such as fog and snow, which may deteriorate the 
data quality and lead to false detections in traffic object recognition (Jokela et al., 2019, Wu et al., 
2020a).  

In this chapter, we propose a neighborhood-based noise removal methodology to eliminate snow noises 
from LiDAR data. It identifies a point of interest from a specific laser channel as an outlier, if the number 
of neighboring points in the same channel within a dynamic search radius is fewer than a threshold. 
Unlike existing methods that filter the entire LiDAR point cloud (Charron et al., 2018, Kurup and Bos, 
2021), the proposed methodology processes LiDAR data channel-by-channel, which helps reduce the 
data dimensionality and decouple the snow effects along the vertical axis of the 3D point cloud, leading 
to more effective and efficient outlier detection. Furthermore, by dynamically changing the search 
radius based on the point-to-sensor distance rather than adopting a fixed search radius, the proposed 
methodology can account for the reduced point density at far distances caused by the non-uniformity of 
LiDAR data. In the experimental study, the proposed methodology is compared against some existing 
LiDAR de-noising approaches, including two state-of-the-art methods, and demonstrates superior 
performance in both accuracy (i.e., F1 score = 98.3%) and efficiency. 

2.1. Background 

Recent years have witnessed groundbreaking developments in the acquisition and processing of light 
Detection and Ranging (LiDAR) data for traffic monitoring, remote sensing, and object recognition tasks 
(Gargoum and El-Basyouny, 2017, Royo and Ballesta-Garcia, 2019, Wu et al., 2020d). For example, 
Autonomous Vehicles (AVs) often rely on LiDAR data for environment perception and object recognition 
(Li et al., 2020a). Despite the exuberant growth of LiDAR sensing technologies and data processing 
techniques, several challenges related to this type of data are yet to be fully addressed.  

One of the pressing concerns is the noise contamination in LiDAR data under severe weather conditions. 
Many researchers have observed that the LiDAR data acquired in adverse weather, such as wind, rain, 
snow, and fog, often suffer from deteriorated quality (Yamauchi, 2010, Michaud et al., 2015, Kutila et 
al., 2018, Charron et al., 2018, Jokela et al., 2019, Wu et al., 2020a, Kurup and Bos, 2021). In a LiDAR 
point cloud, snow particles are often shown as diffuse, solid objects dispersing around the LiDAR sensor. 
Depending on the rate of precipitation and density of particles, it can be particularly challenging for 
LiDAR devices to operate normally under such weather situations because laser beams can be easily 
backscattered from these tiny particles (Kutila et al., 2018). 

To address the issue of noise contamination in LiDAR data, a popular approach in AVs is to leverage 
multi-modal data fusion, by integrating information from other sources such as radar data and RGB 
images to reduce the data uncertainty in each individual data source through cross-domain feature 
correlation (Caesar et al., 2020, Sun et al., 2020). Nevertheless, the development and maintenance of 
multi-sensor platforms are often time-consuming and expensive. Alternatively, many researchers have 
developed and applied data pre-processing approaches to de-noise the LiDAR data captured under 
adverse weather conditions prior to feature extraction. Although two-dimensional (2D) or three-
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dimensional (3D) general-purpose de-noising methods such as median filtering (Castleman, 1996) have 
been adopted to eliminate snow noises from LiDAR data, they often fail to deliver satisfactory 
performance in snow removal because they do not account for the non-uniformity of LiDAR data. More 
recently, a few methodologies specifically designed to address the issue of snow noises in LiDAR data 
have been reported in the literature, which showed promising results on snow removal by taking into 
consideration the unique characteristics of LiDAR point clouds and snow noises. Nevertheless, in the 
existing literature, research findings on de-noising LiDAR data corrupted by snow are still insufficient, 
and thus further efforts need to be devoted to developing and improving LiDAR de-noising 
methodologies in terms of their accuracy and efficiency in processing real-world LiDAR data captured 
under severe snowy weather conditions. 

In this chapter, we propose Dynamic Channel-wise Outlier Removal (DCOR), a neighborhood-based 
noise removal approach, to eliminate snow noises from LiDAR data. The proposed methodology 
processes LiDAR data based on each laser channel and identifies a point of interest as an outlier if the 
number of neighboring points in the same laser channel within a search radius is fewer than a threshold. 
The search radius for each point is dynamically adjusted based on the point-to-sensor distance, such 
that it can account for the varying point density that decreases as the distance to sensor increases. The 
technical contributions can be summarized as follows: 

● The Dynamic Channel-wise Outlier Removal (DCOR) filter is proposed to de-noise LiDAR data 
corrupted by snow. Different than the existing state-of-the-art approaches, the proposed 
method processes LiDAR data channel-by-channel rather than filtering the entire point cloud, 
which helps reduce the data dimensionality and decouple the snow effects along the vertical 
axis. In the experimental study, the cross comparisons between DCOR and two state-of-the-art 
methods have demonstrated that the proposed methodology yields superior performance in 
both accuracy and efficiency. 

● Upon elaborating the technical details of the proposed methodology, the physical meanings and 
impacts of the two parameters, namely the distance factor f and the minimum number of 
neighboring points MinPts, are discussed through theoretical derivations, thus providing insights 
and prior knowledge for future similar studies and applications. 

2.2. Related Work 

It has been widely observed and reported by researchers that severe weather conditions such as snow 
and fog can often deteriorate the quality of LiDAR data captured under such scenarios (Yamauchi, 2010, 
Michaud et al., 2015, Kutila et al., 2018, Charron et al., 2018, Jokela et al., 2019, Wu et al., 2020a, Kurup 
and Bos, 2021). Yamauchi (2010) observed that LiDAR devices can provide good accuracy and resolution 
in normal weather but have difficulties functioning under precipitation and low visibility conditions. 
Michaud et al. (2015) performed an experimental study to characterize the behavior of LiDAR devices in 
snowy conditions. They discovered that the distribution of snowflakes is very close to a log-normal 
distribution, and the noises caused by snowflakes backscattering laser beams are often detectable 
within the distance of 10 meters to the sensor location. Charron et al. (2018) reported that the amount 
of snow decreases when the distance to the sensor increases, with a maximum detectable range 
between 10 meters to 20 meters. Kutila et al. (2018) tested the performance of two LiDAR devices using 
different laser wavelengths under stabilized foggy and rainy conditions in a weather chamber; they 
reported the LiDAR sensors suffered deteriorated performance when the adverse weather condition 
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became more severe and decreased the visibility range. They also recommended a higher (i.e., 1550 nm) 
operating wavelength for LiDAR sensors, leading to less scattering on fog particles. Bijelic et al. (2018) 
tested the performance of four LiDAR systems in controlled conditions in a fog chamber. They 
investigated the optimal configurations of the internal parameters of the LiDAR devices to improve their 
performance under adverse weather. Jokela et al. (2019) performed a benchmark testing on some 
popular LiDAR sensors to compare their performance in adverse weather. They observed that all the 
tested LiDAR sensors performed worse in fog and snow than in clear weather conditions. As revealed by 
the study in (Xu et al., 2021), rainy weather can severely deteriorate the quality of LiDAR point clouds 
and lead to drastic performance degradation in LiDAR-based object detection methods. 

From the perspective of feature representation and extraction, existing methodologies to de-noise 
LiDAR point clouds can be mainly categorized as 2D or 3D-based methods. By transforming the 
information stored in 3D LiDAR data into a 2D representation such as a depth map or an intensity map, 
traditional image processing methods such as 2D median filtering (Castleman, 1996) and Gaussian low-
pass filtering (Castleman, 1996) can be readily adapted. However, as pointed out by Charron et al. 
(2018), these methods primarily focus on smoothing noisy surface points and are not specifically 
designed to remove data outliers in an open 3D space, as is the case with LiDAR data corrupted by snow. 
As a result, 2D-based filtering methods are often unable to remove snow noises effectively due to the 
sparsity of LiDAR point clouds, and they have the negative effect of smoothing edges in key point 
features (Charron et al., 2018). 

Compared to 2D-based methods for snow removal, 3D-based methods can be directly applied to 
processing 3D data and thus are better suited to the nature of LiDAR point clouds. The majority of 
existing 3D-based methods for noise removal are neighborhood-based. This type of methodology usually 
determines whether a point is an outlier based on the geometric and statistical properties (e.g., distance 
and distribution) of all similar points in the vicinity. Popular neighborhood-based methods include the 
Statistical Outlier Removal (SOR) filter (Rusu and Cousins, 2011), Radius Outlier Removal (ROR) filter 
(Rusu and Cousins, 2011), Density-based Spatial Clustering of Applications with Noise (DBSCAN) (Ester et 
al., 1996), etc. Nevertheless, these general-purpose noise removal methods often fail to deliver 
satisfactory performance on snow removal because they do not account for the non-uniformity of LiDAR 
point clouds. More recently, a few 3D de-noising methodologies specifically designed to process LiDAR 
data corrupted by snow have been reported in the literature and demonstrated promising results. 
Charron et al. (2018) developed the Dynamic Radius Outlier Removal (DROR) filter for snow removal by 
adjusting the search radius based on the point-to-sensor distance, which takes into consideration the 
non-uniform distribution of LiDAR point clouds. Wu et al. (2020c) proposed 3D-SDBSCAN by revising the 
conventional DBSCAN algorithm to divide a 3D LiDAR space into two subareas based on the distribution 
of snowflakes and employ different DBSCAN parameters in different subareas. Park et al. (2020) 
proposed the Low-intensity Outlier Removal (LIOR) filter, an intensity-based approach, to eliminate 
snow noises by deleting points with intensity values below a specified intensity threshold rather than 
detecting outliers based on the distance between points. By using LiLaNet (Piewak et al., 2018) as the 
backbone, Heinzler et al. (2020) proposed WeatherNet, a deep learning-based LiDAR de-noising method 
to reduce noises caused by severe weather conditions, such as rain, snow, and fog. Kurup and Bos 
(2021) extended the SOR filter to account for the non-uniformity in LiDAR data by introducing a distance 
multiplication factor. Roriz et al. (2021) developed a LiDAR de-noising method called Dynamic light-
Intensity Outlier Removal (DIOR), which combines DROR and LIOR for snow removal and leverages the 
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Field-Programmable Gate Array (FPGA) technology for real-time performance. Wang et al. (2022b) 
developed the Dynamic Distance–Intensity Outlier Removal (DDIOR) filter, which is an extension of 
DSOR by considering the distance and intensity values of snow noises on the basis of DSOR.  

In the subsequent sections, four different approaches that have been adopted for LiDAR noise removal, 
including two general-purpose methods (i.e., ROR and SOR) and two state-of-the-art methods 
specifically designed to process LiDAR data (i.e., DROR and DSOR), are described in detail. It is worth 
noting that all the four methods are implemented in section 2.4, “Experimental Study and Results”, for 
cross comparison purposes. 

● Statistical Outlier Removal (SOR) 

The SOR filter (Rusu and Cousins, 2011) is a general-purpose filter that has been widely adopted to 
remove noises from point cloud data. The SOR filter first performs a k-nearest neighbor search for each 
point in the point cloud and then calculates the average distance to its neighboring points. The mean 
and standard deviation of the average distances are calculated to determine a global threshold defined 
as (2-1). Points whose distances to their k-nearest neighbors are larger than the threshold 𝑇𝑇𝑔𝑔 will be 
classified as outliers. Because the SOR filter employs a global threshold for outlier detection, it does not 
consider the non-uniform distribution of LiDAR point cloud data.   

 𝑇𝑇𝑔𝑔 = 𝜇𝜇 + (𝜎𝜎 × 𝛽𝛽) (2-1) 

where 𝜇𝜇 and 𝜎𝜎 denote the mean and standard deviation of the average distances from all points to their 
k-nearest neighbors; 𝛽𝛽 is a multiplication factor. 

● Radius Outlier Removal (ROR) 

The ROR filter (Rusu and Cousins, 2011) is also a general-purpose filter designed to remove noises from 
point cloud data, which iterates over each point in a point cloud and calculates the number of 
neighboring points within a fixed search radius. If the total number of neighboring points is smaller than 
a threshold, then the point of interest is identified as an outlier. As mentioned by (Charron et al., 2018, 
Kurup and Bos, 2021), the ROR filter showed deteriorated performance on snow removal because it 
does not consider the non-uniformity of the LiDAR data.  

● Dynamic Radius Outlier Removal (DROR) 

Proposed by Charron et al. (2018), the DROR filter was extended from the ROR filter, which addresses 
the non-uniformity of LiDAR point cloud by dynamically adjusting the search radius in the ROR filter 
based on the point-to-sensor distance, as expressed in (2-2) (Charron et al., 2018). In (Charron et al., 
2018), the DROR filter was compared against the ROR filter on real-world LiDAR data corrupted by 
snowflakes and showed better performance on snow removal.  

 𝑆𝑆𝑅𝑅𝑝𝑝 = �
𝑆𝑆𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑝𝑝 < 𝑆𝑆𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 

𝛽𝛽 × 𝑟𝑟𝑝𝑝 × 𝛼𝛼 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (2-2) 

where 𝑆𝑆𝑅𝑅𝑝𝑝 denotes the search radius for the point p; 𝑟𝑟𝑝𝑝 refers to the distance between p and the LiDAR 
sensor; 𝑆𝑆𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 is a minimum threshold for the search radius; 𝛼𝛼 denotes the horizontal angular resolution 
of the LiDAR sensor; 𝛽𝛽 is a multiplication factor. 

● Dynamic Statistical Outlier Removal (DSOR) 
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The DSOR filter was extended from the SOR filter by employing a dynamic threshold on the average 
distances instead of a fixed threshold. The modification on the threshold can be expressed as (2-3) 
(Kurup and Bos, 2021). If the average distance between a point and its k-nearest neighbors is larger than 
𝑇𝑇𝑑𝑑, it will be classified as an outlier. A comparative study was performed in [11] using real-world LiDAR 
data, which showed that the DSOR filter outperformed the SOR filter and DROR filter on snow removal. 

 𝑇𝑇𝑑𝑑 = 𝑇𝑇𝑔𝑔 × 𝑟𝑟 × 𝑑𝑑 (2-3) 

where 𝑇𝑇𝑑𝑑 denotes the dynamic threshold adjusted for each point; 𝑇𝑇𝑔𝑔 denotes the global threshold 
defined in (2-1); 𝑟𝑟 is a multiplication factor; 𝑑𝑑 refers to the point-to-sensor distance. 

2.3. Methodology 

This section first introduces the LiDAR working mechanism and the characteristics of LiDAR data and 
snow noises, and then describes the technical details of the proposed LiDAR de-noising methodology. 
Subsequently, the physical meanings of the parameters involved in this methodology are elaborated 
through theoretical derivations, and their impacts on the de-noising performance are also discussed and 
assessed qualitatively. 

2.3.1. LiDAR Working Mechanism 

3D LiDAR data usually have a very high resolution along the horizontal direction but a relatively low 
resolution along the vertical direction. For example, for the Velodyne VLP-32C LiDAR sensor employed in 
this chapter, the horizontal angular resolution is 0.2°; in contrast, the angles between laser channels 
along the vertical direction range from 0.33° to 9.36°. Figure 2-1 illustrates a schematic diagram of the 
sensor laser pattern for VLP-32C. This type of sensor consists of 32 laser channels, and each channel is a 
single 902-nm Infrared (IR) laser emitter and detector pair. Note that each channel has a unique and 
fixed elevation angle relative to the horizontal plane of the sensor, and its horizontal angle relative to 
the other laser channels is also fixed, as shown in Figure 2-1 (a). This figure also indicates that the laser 
channels are arranged into four groups such that the channels in each group are inline vertically and 
each group has a horizontal angular offset (i.e., 2.8°) to the other adjacent groups. This sensor pattern 
keeps a widely separated angle between each two adjacent laser channels that are fired in pairs (e.g., 
channel 0 and channel 1, channel 2 and channel 3, etc.) to minimize IR crosswalk. When the IR laser 
emits a laser pulse, its time-of-shooting and direction are recorded. As the laser pulse travels through air 
and gets reflected by an object, the detector receives a portion of the reflected laser energy and records 
the time-of-acquisition. Thus, the distance between the laser and the object can be readily calculated 
based on the speed of laser pulse and the time difference. 
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Figure 2-1. Schematic diagram showing the sensor laser pattern: (a) a single firing; and (b) five 
consecutive firings. 

During data acquisition, the LiDAR sensor rotates about its vertical axis with a constant spin rate (i.e., 
600 RPM) to obtain a 360° horizontal field-of-view (FOV). Figure 2-1 (b) shows the sensor laser pattern 
after five consecutive firings, as the sensor is self-rotating. Thus, the horizontal angular resolution can be 
calculated as (2-4). 

 𝛼𝛼 = 360 ∙
𝜑𝜑
60

∙ 𝑜𝑜0 = 0.2° (2-4) 

where 𝜑𝜑 is the spin rate of the LiDAR sensor, equal to 600 RPM; 𝑜𝑜0 denotes the firing timing of the 
sensor, equal to 55.296 𝜇𝜇𝑒𝑒 per firing cycle. 

2.3.2. LiDAR Data Characteristics 

Because laser lights travel straight, the density of the captured 3D point cloud reduces as the point-to-
sensor distance increases. An example in Figure 2-2 shows the scenario when two laser channels capture 
four points after two consecutive firings. It is obvious that the area of the rectangular region enclosed by 
the four laser pulses is dependent on the distance between the point and the laser. At a farther 
distance, with a larger region covered (i.e., Region B > Region A), the point density in that region will 
reduce accordingly. 

The other contributing factors to the non-uniformity of LiDAR data include the irregular shapes of the 
captured objects, the existence of noises, the diversity of background, etc. Especially, for LiDAR data 
captured in snowy weather, because the tiny snow particles can easily backscatter laser beams, these 
snowflakes often present themselves in the point cloud as diffuse point clusters spreading around the 
sensor. As observed by (Michaud et al., 2015), snow noises in LiDAR data usually follow a log-normal 
distribution, typically detectable within a close range (e.g., 10~15 meters) to the sensor. 

The unique characteristics of LiDAR data and snow noises determine that conventional methods for 
general-purpose noise removal are unequipped to effectively de-noise LiDAR data while preserving 
important edges and foreground features (Charron et al., 2018). 
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Figure 2-2. The non-uniformity of LiDAR point cloud. 

2.3.3. Proposed DCOR Filter 

(1) Dynamic search radius 

In a 3D LiDAR point cloud, foreground objects such as vehicles are often shown as massive point 
clusters, with each point in close proximity to its neighboring points in the same cluster; in contrast, 
noises caused by snowflakes exist in the form of isolated points that are dispersing around the center of 
the point cloud (i.e., sensor location). Based on this observation, the proposed methodology, Dynamic 
Channel-wise Outlier Removal (DCOR) filter, identifies data outliers based on the distances from each 
data outlier to all the points in its vicinity: if the number of neighboring points within a specific distance 
(i.e., search radius) to the point of interest is smaller than a threshold, then that point is considered 
isolated and labeled as an outlier. 

The term “dynamic” indicates that, different than existing general-purpose methods, the proposed 
methodology dynamically adjusts the search radius for each point based on its distance to the sensor 
upon calculating the number of neighboring points, to address the non-uniformity of LiDAR data. 

(2) Channel-wise outlier removal 

As can be inferred from the term “channel-wise”, another unique feature of the proposed methodology 
is that it processes LiDAR data channel-by-channel, unlike the state-of-the-art methods (i.e., DSOR, 
DROR) which choose to filter the entire point cloud. In 3D LiDAR data, the captured point clouds are 
organized based on their laser channels, and the point cloud data in a specific laser channel share many 
common attributes, such as elevation angle. Processing LiDAR data in a channel-wise manner can reduce 
the data dimensionality and decouple the effects of snow noises along the vertical axis. With the 
channel-wise data, the noise removal task has been simplified, and the proposed methodology can now 
focus on distinguishing between the snow noises and foreground points only in that channel, based on 
their distinct geometric features. In addition to adopting the channel-wise data processing strategy, the 
proposed methodology differs from DROR and DSOR in the following aspects: i) the DROR filter requires 
to specify a minimum search radius for LiDAR points with a very small distance to sensor, as expressed in 
(2-2); in contrast, the proposed DCOR filter does not employ such a piecewise-linear design for the 
dynamic search radius; and ii) the DSOR filter removes snow outliers by comparing the mean distance 
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from a point of interest to its k nearest neighbors against a distance threshold; on the contrary, the 
proposed DCOR filter determines if a point is an outlier by assigning a minimum threshold on the 
number of neighboring points within a predefined dynamic search radius.  

The pseudocode for the proposed DCOR filter is provided as Algorithm 1. The distance factor f and the 
minimum number of neighboring points (i.e., a threshold) MinPts are the two control parameters 
involved in the proposed methodology. The physical meanings and impacts of these two parameters are 
described in the subsequent section.  

It is worth noting that, in section 2.4, “Experimental Study and Results”, a variant of the proposed 
methodology, referred to as DCOR-variant1, is also implemented for cross comparison purposes. The 
only difference between DCOR and DCOR-variant1 is that the latter adopts a fixed search radius. Thus, 
by comparing the de-noising performance between the proposed methodology and its variant, the 
impact from the use of a dynamic search radius can be demonstrated. 

 

Algorithm 1 Dynamic Channel-wise Outlier Removal 
Input:  
    LiDAR point cloud (P) = {𝑃𝑃1, 𝑃𝑃2, …, 𝑃𝑃𝑚𝑚}; 𝑛𝑛 = number of laser channels; f = distance factor  

MinPts = minimum number of neighboring points 
Output:  

Outliers (O) 
Filtered point cloud (F) 

 
1: for 𝑃𝑃𝑚𝑚 ∈ P do // Iterate over point clouds 
2: for p ∈ 𝑃𝑃𝑚𝑚 do // Iterate over laser channels 
3:  (𝑥𝑥,𝑦𝑦, 𝑧𝑧) ← coordinate of 𝑝𝑝 
4:  distance ← �𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 // Calculate the dynamic search radius 
5:  SearchRadius ← distance × f // Search for the neighboring points 
6:  k ← NeighboringPoints(p, SearchRadius) // Remove the snow noises 
7:  if k < MinPts then 
8:   add p to O 
9:  else 
10:   add p to F 
11:  end if 
12: end for 
13: end for 
14: return O and F 
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(3) Physical meanings of the parameters f and MinPts 

 

Figure 2-3. Schematic diagram showing the captured points by a single laser channel through five 
consecutive firings. 

Figure 2-3 illustrates a schematic diagram of five points captured by a laser channel through consecutive 
firings. The distance between the point of interest, shown as a green dot in Figure 2-3, and its nearest 
neighbor (shown as a blue dot) can be calculated as (2-5). In the meantime, it is worth noting that the 
subsequent derivation processes are based upon single-channel LiDAR data. 

 𝑒𝑒 = 2𝑑𝑑 ∙ sin �
𝛼𝛼
2
� (2-5) 

where 𝑒𝑒 is the Euclidean distance between the point of interest to its nearest neighboring point; 𝑑𝑑 
denotes the distance from the point of interest to the sensor; 𝛼𝛼 is the horizontal angular resolution, as 
expressed in (2-4). 

If we employ 𝑒𝑒 in (2-5) as the search radius for the point of interest, the number of neighboring points 
(including itself) within this radius is three, under the scenario depicted by Figure 2-3. Similarly, we 
expand the range of the search radius by letting it cover at least NP neighboring points, and its 
expression can be formulated as (2-6).  

 𝑅𝑅 = 2𝑑𝑑 ∙ sin �
NP − 1

2
∙
𝛼𝛼
2
� (2-6) 

where 𝑅𝑅 refers to the minimum search radius to enclose NP points; NP denotes the number of 
neighboring points within the search radius. 

From (2-6), we define the distance factor as the search radius divided by the distance from the point of 
interest to the sensor location, expressed as (2-7). This expression provides a theoretical basis for 
designing a search space for the optimal f value in section 2.4, “Experimental Study and Results”. For 
example, in order to capture at least three points, the lower bound for the corresponding distance 
factor is calculated as 0.0035, based on (2-7). Meanwhile, (2-6) and (2-7) both show that the search 
radius specified for 3D LiDAR data is proportional to the point-to-sensor distance, thus proving the 
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necessity of employing a dynamically adjusted search radius instead of a fixed one for neighborhood-
based outlier removal.  

 𝑓𝑓 =
𝑅𝑅
𝑑𝑑

= 2 sin�
(NP − 1) ∙ 𝛼𝛼

4
� (2-7) 

Note that the relationships in (2-6) and (2-7) only hold under “perfect” conditions without any snow 
noises. As illustrated in Figure 2-4, with the existence of snowflakes and other objects, the number of 
points within the search radius is often much fwer than the theoretical value, which can be described by 
(2-8).  

 

Figure 2-4. Schematic diagram showing the captured points by a single laser channel through five 
consecutive firings, under snow noises and occlusion. 

 
NPactual ≪

4 arcsin � 𝑅𝑅2𝑑𝑑�
𝛼𝛼

+ 1 (2-8) 

where NPactual denotes the actual number of neighboring points within a specific search radius when 
real-world challenges such as snow noises and occlusion exist. 

The expression in (2-8) implies that, for neighborhood-based outlier removal as with the proposed 
methodology, the minimum threshold for the number of neighboring points (denoted as MinPts) is 
rather critical, and it remains a challenge to determine a proper threshold value to effectively distinguish 
between foreground points and snow outliers within a specific search radius. The MinPts value needs to 
be smaller than NPactual, otherwise all the foreground points will be misidentified as outliers; on the 
other hand, if MinPts is much smaller than NPactual, the algorithm then becomes less aggressive in 
detecting snow outliers, leading to more false negative detections.  

The two parameters f and MinPts jointly control the performance of the proposed DCOR filter through 
coupled influences. That is, increasing the value of one parameter will essentially require to increase the 
value of the other accordingly, in order for the proposed methodology to reduce false positive/negative 
detections and operate with effectiveness and consistency. There is no exact guideline on the design 
procedures for these two parameters, and their optimal values often need to be determined through 
extensive experiments. In Case I of the experimental study, we employ grid search, a straightforward yet 
effective design approach, to perform an exhaustive search for the joint optimal configuration on f and 
MinPts from a large search space. 
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2.4. Experimental Study and Results 

Section 2.4.1 describes the data acquisition and ground truth generation processes. Then, section 2.4.2 
briefly introduces the performance metrics adopted for quantitative evaluation. Subsequently, in 
section 2.4.3, two experimental cases are presented: in Case I, a parametric study is performed to obtain 
the optimal parameter values for the proposed methodology to achieve the highest accuracy in outlier 
detection; furthermore, in Case II, the proposed methodology is compared against some existing 
methodologies for cross comparison and performance demonstration purposes. 

2.4.1. Data Acquisition 

The LiDAR data adopted in the experimental study were acquired from a road intersection in Reno, 
Nevada, U.S. As illustrated in Figure 2-5, a Velodyne VLP-32C sensor was installed on a traffic signal 
lighting pole at a corner of the road intersection for data collection. The LiDAR sensor features 32 
channels of laser beams with a 40° FOV along the vertical direction and a 360° FOV along the horizontal 
direction. A data cabinet which houses the other equipment is also deployed at the site, containing a 
data processing computer, network communication devices, and external hard drives. Data acquisition 
was performed under severe snowy weather and resulted in 150 frames of LiDAR data for analysis. 
Figure 2-6 provides an illustrative example of the captured LiDAR data corrupted by snow. As shown in 
Figure 2-6, the LiDAR point cloud is contaminated with a massive amount of snow noises concentrated 
near the sensor location. Another observation from the captured LiDAR data is that the snow noises are 
predominantly scattered within 15 meters. 

 

Figure 2-5. A LiDAR sensor installed on a traffic signal lighting pole at a road intersection. 

The captured LiDAR data were processed by using the DBSCAN-based LiDAR de-noising algorithm 
proposed by Wu et al. (2020c). The obtained outlier detection results were further carefully examined 
and adjusted by a group of trained personnel to generate ground truth labels for the snow outliers. 

Although the experimental study is performed using the Velodyne VLP-32C sensor, the proposed 
methodology can adapt to LiDAR data captured by different types of sensors (e.g., VLP-32C vs. VLP-16) 
by tuning the f and MinPts values accordingly, because the underlying mechanism of the proposed 
methodology stays unchanged, assuming the differences between the captured LiDAR data lie in their 
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resolution, number of laser channels, elevation angle, etc. Meanwhile, the observations and research 
findings in this section based on the 32-channel LiDAR data can provide prior knowledge and insights for 
future similar studies using LiDAR data captured by other types of sensors as well.  

 

Figure 2-6. An example of the acquired roadside LiDAR data corrupted by snow (bird-eye view). 

2.4.2. Performance Evaluation Metrics 

The precision-recall analysis (Fawcett, 2006) is adopted to provide a quantitative measure of the de-
noising performance of the implemented methodologies. This analysis is comprised of three metrics, 
including the Precision, Recall, and F1 score, as defined in (2-9), (2-10), and (2-11), respectively. In these 
equations, TP, FP, and FN denote the number of true-positive detections, false-positive detections, and 
false-negative detections, respectively. Precision is defined as the number of true-positive detections 
divided by the total number of positive detections (i.e., TP+FP); Recall is defined as the number of true-
positive detections divided by the total number of true objects (i.e., TP+FN). Precision reflects the ability 
of an algorithm to make the prediction results relevant to the true objects, while Recall evaluates the 
ability to classify all the true objects correctly. By taking the harmonic mean of Precision and Recall, the 
F1 score provides a comprehensive evaluation of the classification performance of an algorithm. In the 
experimental study, the F1 score is employed as the primary metric to quantitatively measure the 
accuracy of the adopted methodologies for snow removal. 

 Precision =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
 (2-9) 

 Recall =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹
 (2-10) 

 F1 =
2 ∙ Precision ∙ Recall
Precision + Recall

 (2-11) 

2.4.3. Experimental Results 

Two experimental cases are performed. In Case I, a parametric study is conducted using the captured 
LiDAR data to investigate the optimal configuration of the distance factor f and the minimum number of 
neighboring points MinPts. Subsequently, in Case II, the proposed methodology is compared against 
some existing methodologies regarding their de-noising performance. The experiments are performed in 
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MATLAB 2022a with the following computer specifications: CPU: Intel Core i7-8750H @2.20 GHz; RAM: 
16 GB. 

● Case I: A parametric study to determine the optimal parameter configuration on f and MinPts 

In this subsection, a parametric study is performed through grid search to explore the optimal choice on 
the f and MinPts values, such that the proposed DCOR filter can achieve the highest F1 score on snow 
removal. The values for the distance factor f range from 0.005 to 0.1 with an incremental step of 0.005, 
as expressed in (2-12). Meanwhile, the values for the minimum number of neighboring points MinPts 
are odd numbers ranging from 3 to 21, as shown in (2-13). Thus, 200 combinations of f and MinPts 
values are considered in the experimental study. In Case I, each set of the 200 parameter combinations 
is assigned to the proposed methodology to evaluate the corresponding performance on filtering 150 
frames of LiDAR data. For concision, the detailed statistics of the precision-recall metrics are not 
presented herein; instead, the Precision, Recall, and F1 score values (averaged over the 150 frames of 
LiDAR data) for the 200 subcases are illustrated in Figure 2-7, Figure 2-8, and Figure 2-9, respectively, to 
provide a graphical representation on the performance with different parameter values. 

 𝑓𝑓 = 0.005𝑒𝑒 𝑒𝑒 ∈ {1, 2, 3, … , 20} (2-12) 

 𝑀𝑀𝑒𝑒𝑛𝑛𝑃𝑃𝑜𝑜𝑒𝑒 ∈ {3, 5, 7, … , 21} (2-13) 

In Figure 2-7, Figure 2-8, and Figure 2-9, the horizontal x and y axes refer to the f and MinPts values, 
respectively, while the vertical axis refers to the percentage value of each metric. In these figures, the 
200 data samples are shown as blue dots; meanwhile, a surface is fitted to each of the calculated 
metrics through cubic interpolation to help interpret the changing trend incurred by different parameter 
values. 

Figure 2-7 illustrates the average Precision value evaluated on the captured LiDAR point clouds under 
different parameter configurations. As can be observed, when the distance factor f is relatively small 
(e.g., 0.01), employing a large value for the MinPts threshold leads to more aggressive detection of 
outliers. The resulted Precision values by the proposed DCOR filter approach the ratio between the 
number of snow points and the total number of points in the investigated area (i.e., ≈40%) because the 
algorithm tends to predict every point as an outlier, as illustrated by the deep blue region in Figure 2-7. 
Meanwhile, increasing the search radius through enlarging the distance factor f makes the algorithm 
less aggressive, resulting in fewer false-positive detections and improved Precision values, as 
represented by the deep red region in the figure. Overall, it can be observed as a clear trend that a 
smaller MinPts value with a larger f value leads to a higher Precision value. 
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Figure 2-7. Case I: Fit a surface to the Precision values. 

Similarly, the average Recall values and the fitted surface are plotted in Figure 2-8. It can be observed 
that the distance factor f governs the performance of the Recall value. Under a fixed threshold on the 
minimum number of neighboring points (e.g., MinPts = 3), when the distance factor f increases, the 
proposed DCOR filter becomes less aggressive in classifying snow points as outliers due to a larger 
search radius, thus producing more false-negative detections (indicated by the reduced Recall value). 
Meanwhile, by increasing the value for the MinPts parameter, the proposed methodology tends to 
classify all the points as snow noises, leading to a 100% Recall value at the cost of misidentifying 
foreground points as noises, as shown by the deep red region in Figure 2-8. Overall, the Recall value will 
increase with a smaller f value and a larger MinPts value. 

 

Figure 2-8. Case I: Fit a surface to the Recall values. 

Figure 2-9 illustrates the average F1 score and the fitted surface. The F1 score is the harmonic mean of 
the Precision and Recall value, which provides an overall measure of the performance of the proposed 
methodology on snow removal. It can be clearly observed that the F1 score reaches the peak value 
when MinPts = 5 and f = 0.025, as indicated by the green dot in Figure 2-9. Thus, through Case I, the 
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optimal parameter set for the proposed methodology to achieve the highest accuracy in outlier 
detection has been determined. 

 

Figure 2-9. Case I: Fit a surface to the F1 score values. 

● Case II: Cross comparisons on the outlier detection performance by the implemented 
methodologies 

The proposed methodology is further compared against the following methodologies: DCOR-variant1, 
ROR, DROR, SOR, and DSOR. Note that the DCOR-variant1 filter is the same as the proposed 
methodology except that it does not adjust the search radius based on different point-to-sensor 
distances. The intention of implementing the DCOR-variant1 filter for cross comparisons is to reveal the 
impact of using a dynamic search radius to account for the non-uniformity of LiDAR data. 

In total, six methodologies are implemented in Case II and applied to the captured LiDAR data for snow 
removal. The following parameters are adopted for these methodologies: i) DCOR: MinPts = 5, f = 0.025; 
ii) DCOR-variant1: MinPts = 5, search radius = 0.5 meters; iii) ROR: MinPts = 5, search radius = 0.5 
meters; iv) DROR: SRmin = 0.05 meters, 𝛽𝛽 = 0.1, 𝛼𝛼 = 0.333°, MinPts = 5; v) SOR: 𝛽𝛽 = 0.1, MinPts = 5; and 
vi) DSOR: 𝛽𝛽 = 0.1, MinPts = 5, 𝑟𝑟 = 0.05. Note that for each of these methodologies except the proposed 
one, the parameter configuration has been validated through prior knowledge and preliminary studies, 
and the optimal choice on their values is not discussed herein for concision.  

The following performance metrics, including the average Precision, Recall, F1 score, and execution time 
per frame, are illustrated in Figure 2-10, with detailed performance metrics tabulated in Table 2-1. 
Several observations can be made from Figure 2-10 and Table 2-1 as follows: 

Proposed DCOR vs. DCOR-variant1: When the point-to-sensor distance is less than 20 meters, the fixed 
search radius (0.5 meters) adopted in the DCOR-variant1 filter is much larger than the dynamic search 
radius (distance factor = 0.025) employed by the proposed DCOR filter. As a result, the differences 
between DCOR-variant1 and DCOR in the Precision and Recall values are 2.5% and -6.4%, respectively. 
Such observations are consistent with the findings from Figure 2-7 and Figure 2-8. Meanwhile, judging 
from the F1 score, the proposed DCOR filter with an adaptive search radius shows better performance 
than DCOR-variant1, where the improvement in the F1 score is 2.1%. 
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Proposed DCOR vs. DROR/DSOR: According to Table 2-1, the F1 score values for DCOR, DROR, and 
DSOR are 98.3%, 96.4%, and 95.4%, respectively. Compared to the state-of-the-art methodologies, the 
proposed DCOR filter yields the highest F1 score on snow removal, with an improvement of 1.9% and 
2.9%, respectively. Thus, through Case II, the accuracy of the proposed methodology on snow removal 
has been validated through cross comparisons with the two state-of-the-art methodologies. 

DCOR-variant1 vs. ROR: The significant difference between DCOR-variant1 and ROR lies in that the 
former processes the LiDAR data in a channel-wise manner to decouple the snow noises along the 
vertical axis of the 3D space for a more effective outlier detection. In contrast, the latter directly filters 
the entire point cloud. As shown in Figure 2-10 and Table 2-1, DCOR-variant1 outperforms ROR in every 
metric, where the improvements in the Precision, Recall, and F1 score values are 0.3%, 34.1%, and 
22.4%, respectively. This result suggests that processing LiDAR data channel-by-channel will significantly 
boost the performance in correctly identifying all the snow noises, as indicated by the higher Recall 
value. 

DROR vs. ROR: Using a dynamic search radius for outlier detection, the DROR filter shows improved 
results compared to ROR. From Table 2-1, the differences between DROR and ROR in the Precision, 
Recall, and F1 score values are -0.2%, 34.9%, and 22.6%.  

DSOR vs. SOR: The comparison between DSOR and SOR shows the differences in the Precision, Recall, 
and F1 score values are -6.8%, 20.4%, and 8.0%, respectively. By employing a dynamic threshold that 
changes according to the point-to-sensor distance rather than a fixed threshold [see (2-3)], the DSOR 
filter yields higher values on the Recall and F1 score, showing better overall performance on snow 
removal. 

Comparison on the efficiency of the implemented methodologies: from Figure 2-10, the proposed 
DCOR filter and its variant both yield drastically reduced execution time compared to the other 
implemented methodologies. For example, the execution time per frame for DCOR, DROR, and DSOR 
are 0.242, 2.221, and 3.652 secs, respectively, indicating that the proposed methodology has much 
higher efficiency in snow removal. The reason behind such a significant improvement in the execution 
efficiency is that the proposed methodology chooses to decouple the effect of snow noises and reduce 
the data dimensionality by processing data channel-by-channel. Thus, with a much smaller search space 
in each channel, the computational efforts needed for nearest-neighbor searches are effectively 
reduced. 

Table 2-1 Case II: Performance metrics of the implemented methodologies (averaged over 150 frames of 
lidar data). 

Algorithm Precision (%) Recall (%) F1 score (%) Execution time per frame (sec) 
DCOR 97.4 99.2 98.3 0.242 
DCOR-variant1 99.9 92.8 96.2 0.188 
ROR 99.6 58.7 73.8 3.266 
DROR 99.4 93.6 96.4 2.221 
SOR 99.6 77.8 87.4 3.678 
DSOR 92.8 98.2 95.4 3.652 
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Figure 2-10. Case II: Performance metrics by the implemented methodologies: (a) Precision; (b) Recall; 
(c) F1 score; and (d) execution time per frame. 

Furthermore, an illustrative example is provided in Figure 2-11 to qualitatively evaluate the performance 
of the implemented methodologies on snow removal. Figure 2-11 (a) shows the raw LiDAR point cloud 
corrupted by heavy snow, while Figure 2-11 (b-g) demonstrates the filtered point cloud by DCOR, DCOR-
variant1, ROR, DROR, SOR, and DSOR, respectively. Judging from the graphical results in Figure 2-11 (b), 
(e), and (g), DCOR, DROR, and DSOR yield better performance on snow removal than the other 
methodologies. On the other hand, some remnants of the snow noises can be seen in the filtered 
results, especially by ROR [Figure 2-11 (d)] and SOR [Figure 2-11 (f)], because these two types of filters 
are general-purpose filters that do not consider the non-uniformity of LiDAR data. 

Figure 2-12 further evaluates the performance of DCOR, DROR, and DSOR on eliminating snow noises at 
difference distances. In Figure 2-12, the horizontal axis represents the distance between the snow 
noises and the sensor, and the vertical axis refers to the percentage of removed snow noises, which is 
the same as Recall. It can be seen that the proposed DCOR filter captures more snow noises than the 
other two in the range of 0~1 meters. As the distance to the sensor keeps increasing, DCOR shows 
similar performance to DSOR, and they both outperform DROR in the range of 7~13 meters. Such 
observations are consistent with the results on the Recall metric (see Table 2-1).  



 

22 
 

 

Figure 2-11. Case II: An example of the de-noising result: (a) raw point cloud with snow noises; (b) 
filtered point cloud by DCOR; (c) DCOR-variant1; (d) ROR; (e) DROR; (f) SOR; and (g) DSOR. 
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Figure 2-12. Case II: Percentage of removed snow noises as a function of the distance to sensor. 

2.5. Summary 

Severe weather conditions such as heavy fog and snow can often reduce the quality of LiDAR data 
because laser beams can be easily backscattered by fog and snow particles. Tiny snow particles are 
usually shown as diffuse, solid objects scattered around the sensor location in a LiDAR point cloud. Such 
disturbances must be effectively eliminated before the LiDAR data captured under severe weather can 
be adopted for the subsequent traffic object recognition, safety assessment, and decision-making tasks. 

This study proposed a novel methodology called Dynamic Channel-wise Outlier Removal (DCOR) to de-
noise LiDAR data corrupted by snow. The proposed methodology iterates over the LiDAR data based on 
different laser channels and marks a point of interest in a channel as an outlier if the number of 
neighboring points in the same channel (within a dynamic search radius) is fewer than a threshold. 
Unlike the existing LiDAR de-noising methodologies, the proposed methodology processes LiDAR data in 
a channel-wise manner, to reduce the data dimensionality and decouple the snow effects along the 
vertical axis; furthermore, upon searching for neighboring points, the proposed methodology adopts a 
dynamically adjusted search radius which is proportional to the point-to-sensor distance, to account for 
the varying point density that decreases as the distance to sensor increases.  

Two control parameters, namely the distance factor f and the minimum number of neighboring points 
MinPts, are involved in the proposed methodology. The first parameter f is utilized to modify the search 
radius for each point of interest, and the second parameter MinPts sets a minimum threshold to identify 
outliers based on the number of nearest neighbors. In section 2.3, “Methodology”, their physical 
meanings and impacts to the de-noising performance of the proposed methodology are elaborated and 
assessed qualitatively. These two parameters jointly control the performance of the proposed DCOR 
filter through coupled influences: increasing the value of one parameter will essentially require to 
increase the value of the other accordingly, in order for the proposed methodology to reduce false 
positive/negative detections and operate with effectiveness and consistency.  

Data acquisition was performed at a road intersection in Reno, Nevada, U.S., resulting in 150 frames of 
LiDAR data with snow noises for analysis. In Case I of the experimental study, a parametric study is 
conducted to investigate the optimal choice of the distance factor f and the minimum number of 
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neighboring points MinPts, such that the proposed methodology can yield the highest accuracy in snow 
removal. A large search space consisting of 200 combinations of f and MinPts values is constructed to 
explore the joint optimal parameter configuration through grid search. It has been observed as a general 
trend that a larger value for f expands the search radius, and thus, the DCOR filter tends to detect more 
snow noises as false negatives (i.e., reduced Recall value); a larger value for MinPts makes the DCOR 
filter more aggressive in outlier detection, leading to more false positives (i.e., reduced Precision value). 
Through Case I, the optimal values for f and MinPts that lead to the highest F1 score are 0.025 and 5, 
respectively.  

In Case II, the proposed DCOR filter is compared against some other methodologies, including DCOR-
variant1, ROR, DROR, SOR, and DSOR, regarding their performance on snow removal. Note that the only 
difference between DCOR and DCOR-variant1 is that the former employs a dynamic search radius while 
the latter utilizes a fixed search radius. The experimental results show that the proposed DCOR filter 
outperforms its variant with a 2% increase in the F1 score by leveraging a dynamic search radius that 
considers the non-uniformity of LiDAR data. Meanwhile, the comparison between DCOR-variant1 and 
ROR demonstrates that the strategy of processing LiDAR data in a channel-wise manner can significantly 
boost the performance with an increase of 4.7% in the F1 score, where ROR processes the entire point 
cloud as opposed to DCOR-variant1. Moreover, through the cross comparisons in Case II, it has been 
demonstrated that the proposed DCOR filter outperforms the state-of-the-art methodologies, including 
DROR and DSOR, in both accuracy and efficiency, where the average F1 score is 98.3%, 96.4%, and 
95.4%, and the execution time per frame is 0.242 secs, 2.221 secs, and 3.652 secs, respectively.  

In the experimental study, the optimal values for the two parameters are obtained through grid search, 
which is a straightforward but time-consuming approach. Thus, further research efforts need to be 
devoted to developing more effective parameter tuning strategies to improve the efficiency and 
robustness of the proposed methodology. 

  



 

25 
 

CHAPTER 3. LEVERAGING DEEP CONVOLUTIONAL NEURAL NETWORKS PRE-TRAINED ON 
AUTONOMOUS DRIVING LIDAR DATA FOR VEHICLE DETECTION FROM ROADSIDE LIDAR 

DATA 

The majority of existing methodologies applied deep learning (DL)-based techniques, especially 
Convolutional Neural Networks (CNNs), for vehicle detection and tracking on autonomous driving 
datasets (Royo and Ballesta-Garcia, 2019, Li et al., 2020a, Alaba and Ball, 2022). Nevertheless, fewer 
studies were focused on DL-based vehicle detection using roadside LiDAR data, partially due to the lack 
of publicly available roadside LiDAR datasets for network training and testing.  

In this chapter, we develop a novel framework based on CNNs and LiDAR data for automated vehicle 
detection. It leverages the domain knowledge of CNNs trained on large-scale autonomous driving 
datasets for vehicle detection from roadside LiDAR data. In the experimental study, roadside LiDAR data 
were collected at a road intersection in Reno, Nevada, U.S. Meanwhile, a CNN architecture was 
proposed to detect vehicles from LiDAR data through 3D bounding boxes. The proposed CNN was 
modified from the established PointPillars network by adding dense connections to the convolutional 
layers to achieve more complete feature extraction. Three CNNs, including the proposed CNN, 
PointPillars, and YOLOv4, were trained and tested on PandaSet, a publicly available large-scale 
autonomous driving LiDAR dataset. Subsequently, the trained CNNs were reused for vehicle detection 
from the captured roadside LiDAR data. The experimental results demonstrated that the proposed CNN 
outperformed the others in the testing metrics. All three networks showed good performance on vehicle 
detection from the captured roadside LiDAR data. 

3.1. Background 

Recent years have witnessed a steady trend of growth in the investment and development of the U.S. 
transportation infrastructure systems (ASCE, 2021). Nevertheless, a series of challenges and issues 
facing the transportation infrastructure systems continue to exist, such as aging of materials, natural 
hazards, severe weather events, heavy traffic loads, and deteriorated traffic conditions due to 
congestion and accidents, which may cause economic losses and even threaten the public safety. In the 
recently published 2021 Infrastructure Report Card (ASCE, 2021) issued by the American Society of Civil 
Engineers (ASCE), the overall condition of the U.S. road infrastructures was rated as "poor and at-risk". 
From the U.S. Interstate Highway System Report (TRIP, 2021), pavements on 11% of the U.S. Interstate 
Highways were rated in poor or mediocre condition, requiring immediate maintenance and 
rehabilitation. In response to these pressing concerns, the Moving Ahead for Progress in the 21st 
Century Act (MAP-21) (FHWA, 2012) has required governments and state transportation agencies to 
establish performance-based programming and planning strategies and activities to facilitate 
transportation performance evaluation and decision making. It has thus become a rising demand for 
researchers and professionals to devote long-term research efforts to implementing accurate and 
efficient traffic condition monitoring and assessment methodologies to promote the safety, efficiency, 
and serviceability of the transportation infrastructure systems. 

Vehicle detection is essential among the research topics on traffic safety analysis. It leads to information 
such as vehicle speed, accident rate, and traffic congestion level, which is a prerequisite to the 
transportation safety assessment and decision-making. With the rapid advancements in both computer 
vision algorithms and data acquisition devices, computer vision-based methodologies have emerged in 
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the recent decade as the most popular methodologies for automated vehicle detection (Buch et al., 
2011). Researchers often adopted digital video data obtained from road surveillance cameras for traffic 
data collection and vehicle detection (Graettinger et al., 2005, Zhang et al., 2007, Wang et al., 2008, 
Chintalacheruvu and Muthukumar, 2012) in the early years. However, the performance of video-based 
vehicle detection can be deteriorated under severe weather events and varying illumination conditions 
(Zhang et al., 2007, Zhang et al., 2020a).  

Since the past decade, three-dimensional (3D) Light Detection and Ranging (LiDAR) technology has been 
extensively explored and adopted by transportation engineers and researchers for computer vision-
based vehicle detection (Zhang et al., 2019a, Zhao et al., 2019b, Song et al., 2021). One of the significant 
advantages of LiDAR data over traditional video or image data is that it is much less sensitive to weather 
and lighting conditions variations. Therefore it has broader applicability (Wu et al., 2018a). LiDAR 
sensors are often deployed on mobile platforms such as Autonomous Vehicles (A.V.s) and Unmanned 
Aerial Vehicles (UAVs) to capture much spatial and temporal information for traffic monitoring and 
detection. Besides, many studies and applications using roadside LiDAR can also be found (Zhang et al., 
2020c, Wu et al., 2020a, Song et al., 2021), where the LiDAR sensors were deployed at stationary 
locations such as light poles and road intersections. Driven by the technological advancements in the 
A.V.s industry, many publicly available large-scale LiDAR datasets have been acquired for autonomous 
driving research purposes, such as SemanticKitti (Behley et al., 2019), nuScenes (Caesar et al., 2020), and 
PandaSet (2021).  

More recently, there has been a dramatic increase in the use of deep learning (DL)-based techniques, 
more specifically, Convolutional Neural Networks (CNNs), for vehicle detection from LIDAR data, by 
exploiting the readily available large-scale autonomous driving datasets for network training (Miglani 
and Kumar, 2019, Li et al., 2020a). Compared to non-DL-based methods, which often require 
handcrafted feature generation and subjective parameter selection processes, DL-based techniques 
such as CNNs can directly learn from data and self-adaptation to perform pattern recognition with the 
less human intervention (Goodfellow et al., 2016).  

In general, non-DL-based methodologies usually employ data processing and feature extraction 
procedures, including background removal, LiDAR point cloud clustering, vehicle object classification, 
and vehicle tracking. Although certain successes were reported in these studies and applications, some 
challenges and issues from the handcrafted feature generation procedures may exist and remain to be 
fully addressed. Several common issues include the subjectivity of threshold selection for background 
filtering, prior user knowledge and expertise requirements upon designing the feature generation 
procedures, and performance deterioration under severe environmental conditions (Wu et al., 2020a). 
Such issues and challenges may limit the applicability of most of the aforementioned non-DL-based 
methodologies under real-world scenarios.  

Instead, using DL-based techniques for vehicle detection from roadside LiDAR data may alleviate such 
challenges and yield more consistent and robust performance, owing to the advantages of DL-based 
techniques in directly learning from data and adapting to the real-world complexities through multi-level 
feature extractions. Nevertheless, very few studies (Zhang et al., 2020b) applied DL-based techniques for 
vehicle detection from roadside LiDAR data, partially due to the lack of publicly available large-scale 
roadside LiDAR datasets. Moreover, although a significant amount of 3D LiDAR datasets for autonomous 
driving have been published in the literature (Caesar et al., 2020, Sun et al., 2020, Pham et al., 2020, 
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Geyer et al., 2020, Behley et al., 2019, 2021), the feasibility and challenges of training CNNs on 
autonomous driving datasets and reusing them for vehicle detection from roadside LiDAR data have not 
yet been explored and investigated. One of the concerns is that the roadside LiDAR data have different 
point cloud features and characteristics than autonomous driving data, such as point cloud density, 
vehicle-to-sensor distance, data occlusion, and background. 

In this chapter, we propose a novel DL-based framework to detect vehicles from roadside LiDAR data by 
leveraging large-scale autonomous driving datasets for network training and testing. In the experimental 
study, roadside LiDAR data were collected from a road intersection in Reno, Nevada, U.S. Meanwhile, a 
CNN architecture was developed by modifying the established PointPillars object detection network 
(Lang et al., 2019) by adding dense connections between convolutional layers to promote feature fusion 
and extraction. Then, the proposed CNN was trained and tested on PandaSet (2021), a publicly available 
large-scale autonomous driving dataset, for vehicle object detection. The trained network was reused to 
detect vehicles from the captured roadside LiDAR data. The technical merits can be summarized as 
follows: 

● To promote effective deep learning-based strategies for vehicle detection in roadside LiDAR 
data while publicly available large-scale roadside LiDAR dataset is lacking, this study proposes a 
methodology of reusing CNNs pre-trained on autonomous driving data to detect vehicles from 
roadside LiDAR data. In model reuse, the general learned features of vehicles from the 
autonomous driving data are leveraged by the CNNs to help detect similar vehicle objects in the 
roadside LiDAR data. The experiment has validated the efficacy and feasibility of the proposed 
methodology under real-world scenarios, providing insights for future similar applications using 
roadside LiDAR data.  

● A CNN architecture is proposed to detect vehicle objects from LiDAR data. That of PointPillars 
inspires the basic architecture; meanwhile, dense connections are established between 
convolutional layers to enable maximum information flow and achieve more effective feature 
extraction and fusion. In the experimental study, the proposed CNN was compared to 
PointPillars and YOLOv4 (Bochkovskiy et al., 2020) and demonstrated better detection accuracy 
on autonomous driving and roadside LiDAR data. 

3.2. Related Work 

In the literature, a series of studies and applications adopting DL-based techniques with autonomous 
driving datasets have reported successes in traffic object recognition tasks (Li et al., 2020a, Feng et al., 
2020). Feng et al. (2020) reviewed DL-based object detection and semantic segmentation for 
autonomous driving, introducing recent developments in autonomous driving datasets and 
methodologies for multi-modal sensor fusion. They also discussed several challenges, such as data 
diversity and proper data fusion strategies. Gao et al. (2021) surveyed to study the data hunger problem 
for DL-based semantic segmentation tasks for autonomous driving from three perspectives. Firstly, 
popular 3D LiDAR datasets were reviewed, followed by statistical analysis on three representative 
datasets to reveal the characteristics of LiDAR data; secondly, existing DL-based 3D semantic 
segmentation methods were introduced; finally, related problems and challenges were discussed. 
Vaquero et al. (2020) developed a dual-branch CNN for vehicle detection and tracking using 3D LiDAR 
data. Two CNNs were trained separately using the point clouds' front and bird-eye view representations, 
respectively. The fused outputs of the CNNs were then processed for feature clustering and bounding 
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box extraction. Theodose et al. (2021) proposed a 3D object detection CNN for vehicle detection, which 
is resilient to variations in point cloud resolution. A two-step approach was developed: firstly, point 
cloud layers were randomly discarded during training to increase the variability of the training data; 
then, in the network output, multi-variate Gaussian functions were adopted to represent the bounding 
box parameters of each vehicle object, allowing to reduce the number of critical hyperparameters such 
as the size of anchors for bounding box regression (Theodose et al., 2021). 

Meanwhile, some other studies adopted non-DL-based methodologies to detect vehicles from roadside 
LiDAR data. In Sun et al. (2018b), roadside LiDAR point clouds were first pre-processed for ground point 
removal and then utilized for vehicle data clouds clustering; then, each vehicle in the extracted vehicle 
cluster was further identified through a 3D bounding box fitting process. Zhang et al. (2019a) proposed a 
vehicle detection method based on adjacent frame fusion of LiDAR point clouds. The vehicle trajectories 
were successfully extracted through frame fusion without any bounding box fitting procedures. In 
another vehicle detection study using roadside LiDAR data (Zhang et al., 2019b), a background 
construction procedure was proposed to distinguish the foreground objects such as vehicles and 
pedestrians from the background data based on their different distance features. Then, a density-based 
spatial clustering method was employed to group the extracted foreground points into clusters and 
detect vehicles and pedestrians subsequently. Zhao et al. (2019b) adopted a backpropagation artificial 
neural network (BP-ANN) to classify the vehicle and pedestrian objects in pre-processed LiDAR point 
clouds after background filtering and clustering. Three features, including the total number of points in a 
cluster, distance from each cluster to the LiDAR sensor, and direction of the clustered points' 
distribution, were taken as the inputs for the BP-ANN to help distinguish vehicles from pedestrian 
objects. Zhang et al. (2021b) developed an algorithm based on a probabilistic neural network (PNN) to 
classify the road objects into cars, trucks, pedestrians, and bicycles, using their distinct point cloud 
features (e.g., number of points, distance) extracted from the roadside LiDAR data as the inputs.  

3.3. Methodology 

3.3.1. Flow Chart of the Proposed DL-based Framework 

As shown in Figure 3-1, this DL-based framework is comprised of three phases. In Phase I, a LiDAR sensor 
is installed at a road intersection to capture 3D point cloud data of the surrounding objects, including 
vehicles, pedestrians, roadways, buildings, and background.  

In Phase II of the proposed framework, a publicly available large-scale autonomous driving dataset (i.e., 
PandaSet) is adopted for network training and testing. Data pre-processing and augmentation 
techniques are applied to the training data to remove data outliers and improve the network training 
performance. 

The trained CNN is then utilized in Phase III for prediction to generate 3D bounding boxes for vehicle 
objects in the captured roadside LiDAR data. The core concept of the proposed methodology is to take 
advantage of the readily available autonomous driving dataset for network training and testing and 
further transfer the domain knowledge of the trained CNN to detect vehicle objects from the captured 
roadside LiDAR data.  
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Figure 3-1. Flow chart of the proposed DL-based framework for vehicle object detection. 

3.3.2. Data Pre-processing 

The LiDAR data from PandaSet contain 3D point cloud information captured from autonomous driving 
scenarios, ranging from [-200, 200] meters along both horizontal axes. Commonly, point clusters closer 
to the origin (i.e., LiDAR sensor) are reflected from foreground objects such as cars with a relatively 
higher point cloud density. In comparison, those scattered at farther distances usually belong to 
background objects. Besides, the vertical distances between the onboard LiDAR sensor and nearby 
vehicles are relatively small. Thus, the first step of data pre-processing is to crop the point clouds based 
on the criteria in (2-1) and (3-2), focus on detecting vehicle objects at closer distances, and improve the 
training efficiency by reducing the data size.  

● Thresholding based on the distance from each point to the origin: 

 �𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 ≤ 𝑜𝑜𝑜𝑜𝑙𝑙1 (3-1) 

● Thresholding based on the vertical location of each point: 

 |𝑧𝑧| ≤ 𝑜𝑜𝑜𝑜𝑙𝑙2 (3-2) 

where 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 are the coordinates of the points to be preserved; 𝑜𝑜𝑜𝑜𝑙𝑙1 refers to the distance 
threshold, selected as 40 meters; 𝑜𝑜𝑜𝑜𝑙𝑙2 is the maximum vertical distance between the origin and each 
point, which is equal to 5 meters. Note that these threshold values are determined based on prior 
knowledge, and discussions on the optimal choices of these values are out of the scope of this study. 

The LiDAR point clouds are further processed through a median filter in the second step of data pre-
processing. The median filter is a simple yet efficient spatial domain non-linear filtering technique 
known to have good performance in preserving edges, suppressing noises, and removing data outliers 
(Gonzales and Woods, 2002). As defined in (3-3), the median filter is applied by convolving a filter kernel 
𝑒𝑒 with the point cloud data. 
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● Removing noises and data outliers through median filtering: 

 �̃�𝑧(𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘) = median�𝑥𝑥𝑗𝑗,𝑦𝑦𝑗𝑗�∈𝑤𝑤�𝑧𝑧�𝑥𝑥𝑗𝑗,𝑦𝑦𝑗𝑗�� (3-3) 

where the median{∙} operator calculates the median of a set of data; 𝑧𝑧(𝑥𝑥𝑗𝑗,𝑦𝑦𝑗𝑗) denotes the vertical 
coordinate of the point at (𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗) location; 𝑒𝑒 refers to the neighborhood centered on the point at 
(𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘). In the experimental study, the radius of the neighborhood 𝑒𝑒 is set as 0.05 meters; the output 
�̃�𝑧(𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘) is assigned as the new vertical coordinate of the point at (𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘). 

3.3.3. Data Augmentation 

Data augmentation techniques such as rotation and flipping can effectively reduce model overfitting and 
improve generalization by increasing the number of training data through label-preserving 
transformations (Shorten and Khoshgoftaar, 2019). In this study, two widely used data augmentation 
techniques, including rotation [defined in (3-4)] and random translation [defined in (3-5)], are employed 
to expand the LiDAR dataset and avoid positional bias in the data.  

● Rotation along the vertical axis: 

 
[𝐱𝐱�, 𝐲𝐲�, 𝐳𝐳�]𝑚𝑚×3 = [𝐱𝐱, 𝐲𝐲, 𝐳𝐳]𝑚𝑚×3 ∙ �

cos𝜃𝜃 sin𝜃𝜃 0
− sin𝜃𝜃 cos𝜃𝜃 0

0 0 1
� (3-4) 

● Random translation along all three axes: 

 [𝐱𝐱�, 𝐲𝐲�, 𝐳𝐳�]𝑚𝑚×3 = [𝐱𝐱, 𝐲𝐲, 𝐳𝐳]𝑚𝑚×3 + 𝐓𝐓          𝐓𝐓 ~ 𝐔𝐔(𝑎𝑎, 𝑏𝑏) (3-5) 

where 𝑚𝑚 refers to the total number of points in the point cloud data, and 𝐱𝐱, 𝐲𝐲, 𝐳𝐳 denote their 
coordinates along the three axes, respectively; 𝜃𝜃 denotes the rotation angle, measured 
counterclockwise along the vertical axis, where 𝜃𝜃 ∈ {45°, 90°, 135°, 180°, 225°, 270°, 315°}; each entry 
in the 𝐓𝐓 matrix is drawn from a uniform distribution 𝐔𝐔(𝑎𝑎, 𝑏𝑏) with 𝑎𝑎 = -0.2 meters and 𝑏𝑏 = 0.2 meters, 
respectively. 

3.3.4. Proposed CNN architecture 

● Basic layout 

PointPillars was developed by Lang et al. (2019) for 3D object detection from LiDAR point clouds. The 
PointPillars network leverages PointNet (Qi et al., 2017) to learn a representation of point clouds 
organized in vertical columns, referred to as pillars. Features are extracted from each point in the pillar 
based on the expressions in (3-6). The pillar features are encoded into a pseudo image to be processed 
through a 2D CNN encoder, followed by a Single Shot Detector (SSD) module (Liu et al., 2016) to predict 
a 3D bounding box for each object instance. Compared to CNNs using 3D convolutional layers for 
feature extraction from point clouds, PointPillars can achieve both higher efficiency and accuracy 
through a less expensive feature extraction process using 2D CNN encoders [30]. Interested readers can 
refer to (Lang et al., 2019) for more detailed descriptions of this deep network.  

 𝐩𝐩𝑚𝑚 = �𝑥𝑥𝑚𝑚,𝑦𝑦𝑚𝑚 , 𝑧𝑧𝑚𝑚 , 𝑟𝑟𝑚𝑚, 𝑐𝑐𝑥𝑥𝑖𝑖 , 𝑐𝑐𝑦𝑦𝑖𝑖 , 𝑐𝑐𝑧𝑧𝑖𝑖 ,𝑝𝑝𝑥𝑥𝑖𝑖 ,𝑝𝑝𝑦𝑦𝑖𝑖� (3-6a) 
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 𝑐𝑐𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑚𝑚 −
1
𝐹𝐹
�𝑥𝑥𝑗𝑗
𝑗𝑗∈𝑃𝑃

 (3-6b) 

 𝑐𝑐𝑦𝑦𝑖𝑖 = 𝑦𝑦𝑚𝑚 −
1
𝐹𝐹
�𝑦𝑦𝑗𝑗
𝑗𝑗∈𝑃𝑃

 (3-6c) 

 𝑐𝑐𝑧𝑧𝑖𝑖 = 𝑧𝑧𝑚𝑚 −
1
𝐹𝐹
�𝑧𝑧𝑗𝑗
𝑗𝑗∈𝑃𝑃

 (3-6d) 

 𝑝𝑝𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑚𝑚 − 𝑥𝑥𝑝𝑝𝑝𝑝 (3-6e) 

 𝑝𝑝𝑦𝑦𝑖𝑖 = 𝑦𝑦𝑚𝑚 − 𝑦𝑦𝑝𝑝𝑝𝑝 (3-6f) 

where 𝐩𝐩𝑚𝑚  is the extracted pillar feature vector from the 𝑒𝑒𝑡𝑡ℎ point in the pillar; (𝑥𝑥𝑚𝑚 ,𝑦𝑦𝑚𝑚 , 𝑧𝑧𝑚𝑚) are the 
coordinates of the 𝑒𝑒𝑡𝑡ℎ point, and 𝑟𝑟𝑚𝑚 denotes the laser beam intensity at that point; (𝑐𝑐𝑥𝑥𝑖𝑖 , 𝑐𝑐𝑦𝑦𝑖𝑖 , 𝑐𝑐𝑧𝑧𝑖𝑖) refer to 
the distances from the 𝑒𝑒𝑡𝑡ℎ point to the arithmetic mean of all points in the pillar; 𝑃𝑃 denotes the pillar 
region, centered at (𝑥𝑥𝑝𝑝𝑝𝑝 ,𝑦𝑦𝑝𝑝𝑝𝑝), and 𝐹𝐹 is the total number of points in the pillar; 𝑝𝑝𝑥𝑥𝑖𝑖  and 𝑝𝑝𝑦𝑦𝑖𝑖  are the offsets 
from the pillar center. 

As illustrated in Figure 3-2, the proposed CNN shares a similar architecture layout as PointPillars. 
Nonetheless, the critical difference between PointPillars and the proposed CNN lies in that the proposed 
CNN adopts dense blocks by adding dense connections to the 2D convolutional layers in PointPillars, to 
maximize the information flow in the CNN encoder and thus achieve a more comprehensive and 
efficient feature extraction.  

● Dense Connectivity 

Developed in (Huang et al., 2017), the “dense connection” (Figure 3-2) represents a straightforward yet 
very efficient connectivity pattern in which each layer obtains information from all preceding layers and 
passes on its feature map outputs to all subsequent layers. Such a connectivity pattern can be expressed 
as (7). According to (Huang et al., 2017), the use of dense connections in a CNN architecture has several 
advantages, such as alleviating the vanishing gradient problem (Goodfellow et al., 2016, Maas et al., 
2013) and encouraging feature reuse by maximizing the information flow.(3-7) 

 x𝑚𝑚 = 𝐻𝐻𝑚𝑚([x0, x1, x2, … , x𝑚𝑚−1]) (3-7) 

where x𝑚𝑚  denotes the feature map output from layer 𝑒𝑒; [x0, x1, x2, … , x𝑚𝑚−1] refers to the concatenation 
of the feature maps produced by all preceding layers; 𝐻𝐻𝑚𝑚(∙) is defined as a composition function of three 
consecutive operations: a 3'3 convolution for feature extraction (Goodfellow et al., 2016), a batch 
normalization for input regularization (Ioffe and Szegedy, 2015), and a Leaky Rectified Linear Unit (Leaky 
ReLU) to add nonlinearity to the network (Maas et al., 2013). 

Three dense blocks (shown as "Denseblock" in Figure 3-2) are employed for feature extraction and 
down-sampling in the proposed CNN architecture. Two factors can describe each dense block as 𝑛𝑛 and 
𝑘𝑘, where 𝑛𝑛 refers to the number of composite functions [defined in (3-7)], and 𝑘𝑘 denotes the number of 
convolutional filters in each composite function. For feature expansion, the outputs from each dense 
block are then fed into corresponding transposed convolutional blocks (shown as "TransConv" in Figure 
3-2). Each transposed convolutional block consists of three operations: a 3'3 transposed convolutional 
layer with 128 filters for feature expansion, a batch normalization, and a Leaky ReLU. Outputs from all 
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the transposed convolutional blocks are then combined through a depth concatenation layer, serving as 
the inputs for the SSD module for bounding box detection. 

 

Figure 3-2. Network overview. 

3.4. Experimental Study and Results 

This section presents an experimental study to validate the efficacy of the proposed methodology for 
vehicle detection. Firstly, in section 3.4.1, the data acquisition and dataset generation procedures are 
introduced in detail; then, in section 3.4.2, the adopted CNNs which are to be trained and tested for 
cross-comparison are introduced; subsequently, in section 3.4.3, the quantitative metrics employed for 
performance evaluation are described; in section 3.4.4, the experimental setups for network training 
and testing are explained, including the computing environment, training scheme and hyperparameter 
configuration, and network parameter initialization; section 3.4.5 presents the results and discussions 
on two experimental cases, where Case I applied the autonomous driving dataset for network training 
and testing, and Case II further adopted the trained networks for vehicle detection from the acquired 
roadside LiDAR data. 
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3.4.1. Data Acquisition and Dataset Generation 

● Autonomous Driving Data for Network Training and Testing 

PandaSet (2021) was selected as the autonomous driving dataset for network training and testing. This 
dataset features more than 8,000 3D LiDAR point clouds of various urban scenes, captured through a 
Panda64 LiDAR sensor with 64 channels of laser beams and a 40° vertical field of view (FOV). The 
dataset provides 3D bounding box labels for 18 different object classes such as cars, trucks, and 
pedestrians. An example of the autonomous driving data is illustrated in Figure 3-3, in which 3D 
bounding boxes are overlaid with the vehicle objects (i.e., cars and trucks) as the ground truth.  

 

Figure 3-3. An example of the point clouds in PandaSet. 

A subset of PandaSet was randomly selected and processed through the aforementioned data pre-
processing and data augmentation procedures. As a result, 11,200 LiDAR point cloud frames, together 
with their ground truth label data, were prepared for network training and 2,400 frames for testing, 
respectively. 

● Roadside LiDAR Data for Prediction 

The LiDAR sensor is part of the roadside LiDAR sensing system that has been deployed at the site since 
2019 for long-term data acquisition and monitoring. The roadside LiDAR data were acquired at the 
intersection of Evans Ave & N McCarran Blvd in Reno, Nevada, U.S., using a Velodyne VLP-32C sensor 
with 32 channels of laser beams and a 40° vertical FOV. The LiDAR sensor and a data cabinet were 
mounted on the traffic signal pole at the northeast corner of the intersection, as shown in Figure 3-4. 
The cabinet was installed to house the equipment of the roadside LiDAR sensing system, including a data 
processing computer, network devices, and external hard drives. A substantial amount of roadside 
LiDAR data was captured while the system functioned under challenging environments such as high 
temperature (110℉) and ambient vibration due to traffic, dust, wind, snow, and rain. Figure 3-5 
demonstrates an example of the captured roadside LiDAR data.  

In Case II of the experimental study, a subset of the captured roadside LiDAR data containing 1,000 
frames was randomly selected as the Testing Dataset 2 for prediction and performance evaluation 
purposes. The LiDAR datasets used for network training and testing are tabulated in Table 3-1. 
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Figure 3-4. The roadside LiDAR sensor for data acquisition. 

 

Figure 3-5. An example of the acquired roadside LiDAR data. 

 

Table 3-1 A summary of the datasets utilized for network training and testing. 

Dataset name Data type Number of point clouds Used in 
Training dataset Autonomous driving data 11,200 Case I 
Testing dataset 1 Autonomous driving data 2,400 Case I 
Testing dataset 2 Roadside LiDAR data 1,000 Case II 

 

● Comparisons between the Autonomous Driving Data and Roadside LiDAR Data 

The domain knowledge learned from the autonomous driving data by the CNNs consists of available 
features such as the dimensions and shapes of vehicles, roadways, and light poles, which also exist in 
the roadside LiDAR data. Thus, it is feasible to reuse the pre-trained networks to detect vehicles from 
the roadside LiDAR data, based on the similar vehicle shapes and dimensions features in these two types 
of data.  

Nevertheless, there are still several differences between the autonomous driving data and roadside 
LiDAR data, explained as follows:  
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(1) Point Cloud Density 

The roadside LiDAR data were captured by a 32-channel LiDAR sensor, while the autonomous driving 
data in PandaSet were obtained through a 64-channel sensor. More data channels in the autonomous 
driving datasets result in higher point cloud densities of the vehicle clusters. 

(2) Average Distance from the Vehicle Cluster to the Sensor 

Autonomous driving data are often acquired by mounting a LiDAR sensor on a survey vehicle to capture 
surrounding vehicle objects. Roadside LiDAR sensors, however, are installed at stationary locations such 
as light poles to acquire LiDAR data at a relatively farther distance. For example, the average distances 
from the vehicle point clusters to the sensor in the adopted autonomous driving data and roadside 
LiDAR data are around 18 m and 22 m, respectively. The difference in the vehicle-to-sensor distance also 
affects the number of points reflected from each vehicle object. 

(3) Average Height of the Vehicle Point Cluster 

Due to the different approaches to sensor installation, the average height of the vehicle clusters in the 
autonomous driving dataset is around 2.5 m lower than that in the captured roadside LiDAR data. 

(4) Vehicle Occlusion 

Under the influences of multiple impact factors, including the point cloud density, vehicle-to-sensor 
distance, and height of the vehicle point cluster, vehicle occlusion in these two types of LiDAR data 
occurs differently. In the autonomous driving dataset, both the side and top of some vehicle objects at 
far distances are often occluded; in the roadside LiDAR data, because the sensor is typically installed at a 
relatively high location, the point cloud information from the top of each vehicle object can be readily 
obtained without occlusion. 

When reusing the pre-trained CNNs for vehicle detection from the roadside LiDAR data, the different 
data characteristics may cause performance degradation, as shown in Case II of the experimental study. 

3.4.2. CNNs for Cross Comparison 

In addition to the proposed CNN and PointPillars (Lang et al., 2019), a state-of-the-art object detection 
network, namely YOLOv4 (Bochkovskiy et al., 2020), was adopted in the experimental study for cross-
comparison. The architecture of YOLOv4 consists of CSPDarknet53 (Wang et al., 2020a) as the backbone, 
spatial pyramid pooling (SPP) module (He et al., 2015) as additional blocks, PANet (Liu et al., 2018) for 
parameter aggregation, and YOLOv3 (Redmon and Farhadi, 2018) object detection head. The benchmark 
study in (Bochkovskiy et al., 2020) showed that YOLOv4 outperformed other state-of-the-art object 
detectors with higher accuracy and efficiency. More technical details on YOLOv4 can be found in 
(Bochkovskiy et al., 2020). To apply YOLOv4 to detect vehicles in the 3D LiDAR data, the LiDAR input was 
transformed into 2D bird-eye view images with the dimension of 1024×1024 pixels. Each RGB image has 
3 channels that contain the information on point density, height, and intensity at each pixel location. 

To sum up, three CNNs were employed for training and testing in the experimental study to help 
validate the proposed methodology through cross-comparisons. 
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3.4.3. Performance Evaluation Metrics 

The precision-recall analysis [46] was adopted in the experimental study to evaluate network 
performance on vehicle object detection(Fawcett, 2006) quantitatively. Three performance metrics are 
included, which are the Precision, Recall, and F1 scores, as defined in (2-9), (2-10), and (2-11), 
respectively. Precision is the number of accurate positive detections divided by the total number of 
positive detections by the network. The recall is the number of true positive detections divided by the 
number of true vehicle objects. And as a harmonic mean of the Precision and Recall, the F1 score 
provides an overall measure of the detection performance of the network on each LiDAR point cloud. 
Note that in the experimental study, the mean value for each metric is calculated, but also its histogram 
is illustrated to comprehensively measure the network performance on the testing datasets. 

 Precision =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
 (3-8) 

 Recall =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹
 (3-9) 

 F1 =
2 ∙ Precision ∙ Recall
Precision + Recall

 (3-10) 

where TP and FP refer to the number of true positive and false positive detections, respectively; note 
that a bounding box detection is considered a true positive if it has the largest overlap (more than 50%, 
measured by intersection over union (Rezatofighi et al., 2019)) with the ground truth bounding box 
(Geiger et al., 2012), and multiple detections of the same object are considered as false positives; and, 
FN refers to the number of true vehicle objects that are not detected by the network. 

3.4.4. Experimental Setup 

● Computing Environment 

The experimental study was performed using MATLAB (MATHWORKS, 2019) deep learning toolbox and 
LiDAR toolbox, with the computer specifications: CPU: Intel Xeon Gold 6254 @ 3.10 GHz; GPU: Nvidia 
RTX Quadro 8000 with 48 GB RAM. 

● Training Scheme and Hyperparameter Configuration 

The loss function introduced in (Yan et al., 2018) was adopted for optimization. In training the adopted 
three networks, the Adam optimizer (Kingma and Ba, 2014) was employed to minimize the loss function. 
Adam is a straightforward yet computationally efficient algorithm for gradient-based optimization of 
stochastic objective functions (Kingma and Ba, 2014); thus, it has been extensively adopted for network 
training. A series of hyperparameters associated with the training process is as follows: mini-batch size 
(10), number of epochs (90), initial learning rate (0.0002), learning rate drop period (15) and drop factor 
(0.8), gradient decay factor (0.9), squared gradient decay factor (0.999), and leaky ReLU factor (0.01), 
with their values provided in parentheses. The values for these hyperparameters are determined based 
on prior knowledge and other successful applications such as (Lang et al., 2019), and discussions on the 
optimal choices of these values are out of the scope of this study. 
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● Network Parameter Initialization 

The weights in each convolutional layer are initialized using the Glorot initializer (Glorot and Bengio, 
2010), which randomly draws samples from a Gaussian distribution with zero mean and variance based 
on the dimension of the weights. The initial biases are all set as zeros. In each batch normalization layer, 
the initial scale and shift factor are equal to one and zero, respectively. 

3.4.5. Experimental Results 

Two experimental cases were performed. In Case I, the adopted CNNs was trained and tested using the 
autonomous driving data (see Table 3-1). After training was completed, the trained CNNs were then 
reused for vehicle detection from the roadside LiDAR data in Case II. 

● Case I: Network Training and Testing on the Autonomous Driving Dataset 

The trained CNNs were tested on the autonomous driving dataset, namely the Testing Dataset 1 in Table 
3-1. Three metrics, including the Precision, Recall, and F1 score, are calculated from Testing Dataset 1, 
and their average values are illustrated in Figure 3-6. Meanwhile, each CNN's training time and testing 
time are also illustrated in Table 3-1 as a measure of the network efficiency. Detailed statistics are 
tabulated in Table 3-2. From Figure 3-6, Table 3-1, and Table 3-2, some observations can be made as 
follows: 

(1) Testing Accuracy 

As an overall measure, the F1 scores of the proposed CNN, PointPillars, and YOLOv4 are 76.5%, 69.5%, 
and 73.8%, respectively. Compared to PointPillars and YOLOv4, the proposed CNN achieves the highest 
F1 score with an improvement of 7.0% and 2.7%, respectively, indicating the best performance in 
detection accuracy. It can be observed that the proposed CNN outperforms PointPillars in all three 
metrics, including the Precision, Recall, and F1 score values, by an increase of 5.3%, 8.9%, and 7.0%, 
respectively. Such a significant improvement in the network performance is induced by using dense 
connections to promote feature fusion and extraction. It is also worth noting that YOLOv4 yields the 
highest Precision value, which indicates the capability of reducing false-positive detections. In Case I, all 
the three CNNs have achieved good accuracy when testing on the autonomous driving dataset, 
measured by the precision-recall metrics.  

(2) Training and Testing Efficiency 

Judging from the training and testing time by the proposed CNN and PointPillars, it can be concluded 
that the proposed CNN has similar efficiency as PointPillars. Although the proposed CNN employs a 
much more complicated connectivity pattern between convolutional blocks through dense connections, 
its training and testing efficiency is not severely deteriorated, where the relative differences between 
the proposed CNN and PointPillars in the training and testing time are only 3.8% and 3.2%, respectively. 
Meanwhile, YOLOv4 achieves the best efficiency in network training and testing, mainly caused by the 
fact that the input data for YOLOv4 are 2D images generated by transforming the 3D LiDAR data into 2D 
bird-eye review representation. 
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Figure 3-6. Case I: Bar plots of the average metrics values evaluated on the Testing Dataset 1: (a) 
Precision; (b) Recall; (c) F1 score. 

 

Figure 3-7. Case I: Bar plots of (a) training time and (b) testing time per frame. 

 

Table 3-2 Case I: Performance metrics evaluated on the autonomous driving data. 

Network Average 
Precision (%) 

Average 
Recall (%) 

Average F1 
score (%) 

Training 
time (hour) 

Testing time per 
frame (ms) 

Proposed CNN 72.6 82.8 76.5 68.2 12.8 
PointPillars 67.3 73.9 69.5 65.7 12.4 
YOLOv4 77.7 70.6 73.8 37.0 11.9 

 

In addition to measuring the detection performance using the average values of the metrics, histograms 
of each metric evaluated from the Testing Dataset 1 are illustrated in Figure 3-8 to provide a graphical 
representation of the differences between the proposed CNN and the other two CNNs in terms of their 
detection accuracy. In Figure 3-8 (a-c), the histograms of the Precision, Recall, and F1 score by the 
proposed CNN (shown in gray color in Figure 3-8) and PointPillars (red color) are overlaid with each 
other. Similarly, in Figure 3-8 (d-f), the histograms of the three metrics by the proposed CNN (gray color) 
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are overlaid with those by YOLOv4 (blue color). The horizontal axis of each plot indicates the percentage 
value of each metric, and the vertical axis refers to the number of bins. By comparing the results 
between the proposed CNN and PointPillars in Figure 3-8 (a-c), the histograms of all three metrics by the 
proposed CNN are more skewed to the right-hand side of the plot, indicating higher metric values. Thus, 
it can be concluded that the proposed CNN has better performance than PointPillars in detecting vehicle 
objects from the autonomous driving dataset. Meanwhile, as shown in Figure 3-8 (d-f), YOLOv4 
outperforms the proposed CNN in the histogram of the Precision value. Still, the histogram of the F1 
score by the proposed CNN is more skewed to the right-hand side of the plot, indicating better overall 
performance. 

 

Figure 3-8. Case I: Histograms of the metrics evaluated on the Testing Dataset 1: (a-c) the Precision, 
Recall, and F1 score by the Proposed CNN vs. PointPillars; and (d-f) the Precision, Recall, and F1 score by 

the Proposed CNN vs. YOLOv4. 

● Case II: Reusing the Trained CNNs to Detect Vehicle Objects from the Roadside LiDAR Data 

The trained networks, including the proposed CNN, PointPillars, and YOLOv4 from Case I, were further 
utilized to make predictions on the Testing Dataset 2 (see Table 3-1), a dataset comprised of the 
captured roadside LiDAR data.  

The three metrics, including the Precision, Recall, and F1 score, are calculated from the Testing Dataset 
2 to measure the detection performance on the roadside LiDAR data. The average values of these 
metrics are illustrated in Figure 3-9 and tabulated in Table 3-3. Similar to Case I, the proposed CNN 
yields the highest F1 score of 72.9%, with an increase of 5.2% and 2.4% compared to those by 
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PointPillars and YOLOv4, respectively, indicating the best detection accuracy on the roadside LiDAR data. 
It has been observed as a consistent trend that by directly reusing the pre-trained CNNs to detect 
vehicles from the roadside LiDAR data, all the three CNNs still yield good detection accuracy, where the 
differences in the average F1 scores by the three CNNs between Case I vs. Case II are only 3.6%, 1.8%, 
and 3.3%, respectively. In model reuse, the general learned features of vehicles from the autonomous 
driving dataset are leveraged by the CNNs to help detect similar vehicle objects from the roadside LiDAR 
data. The slight performance deterioration may be caused by some differences in the characteristics of 
autonomous driving and roadside LiDAR data. Thus, through the comparisons between Case I and Case 
II, the feasibility of reusing pre-trained CNNs on autonomous driving data for vehicle detection from 
roadside LiDAR data has been validated with real-world data. 

Table 3-3 Case II: Performance metrics evaluated on the roadside LiDAR data. 

Network Average Precision (%) Average Recall (%) Average F1 score (%) 
Proposed CNN 69.9 79.7 72.9 
PointPillars 65.6 72.4 67.7 
YOLOv4 74.2 69.2 70.5 

 

 

Figure 3-9. Case II: Bar plots of the average metrics values evaluated on the Testing Dataset 2: (a) 
Precision; (b) Recall; (c) F1 score. 

An example of the detection results on the roadside LiDAR data by PointPillars, YOLOv4, and the 
proposed CNN is illustrated in Figure 3-10 to demonstrate their performance. Figure 3-10 (a), (b), and (c) 
display the detection results on a LiDAR point cloud by PointPillars, YOLOv4, and the proposed CNN, 
respectively, in which the detected bounding boxes (shown in red color) are overlaid with the point 
cloud data. An effective post-processing step is applied to remove most false positive detections by 
setting a minimum threshold on the number of points enclosed by each bounding box. As can be seen, 
all the three CNNs can detect the majority of the vehicle objects as true positives. Nevertheless, in 
Figure 3-10 (a), a false negative detection by PointPillars is observed, as indicated by the green circle. 
Another observation from Figure 3-10 (a) is that the yaw angle for one of the predicted bounding boxes 
by PointPillars is not accurate. The detection results by YOLOv4 in Figure 3-10 (b) also exhibit two false 
negatives (shown in green circles) and a false positive detection which is caused by the disturbance of 
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the background. Note that the bounding boxes produced by YOLOv4 are initially 2D, which are then 
transformed into 3D boxes by assigning a fixed vertical box dimension and calculating their vertical 
coordinates based on ground heights. Therefore, the 3D bounding boxes predicted by YOLOv4 are less 
accurate in their vertical dimensions than those by the proposed CNN. Finally, Figure 3-10 (c) shows that 
the proposed CNN yields the best detection results in this example without producing any false negative 
detections.  

 

Figure 3-10. Case II: Demonstration of the detection results: (a) PointPillars; (b) YOLOv4; and (c) the 
Proposed CNN. 

3.5. Summary 

In the AVs industry, many autonomous driving LiDAR datasets have been made available to the public 
for deep learning-based vehicle object detection research. On the contrary, there is a lack of large-scale 
publicly available LiDAR datasets captured from the roadside to train and test deep learning models. 
This study proposed a methodology based on CNNs, to explore the feasibility and challenges of reusing 
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CNNs trained on autonomous driving datasets for vehicle detection from roadside LiDAR data. The 
proposed CNN architecture is modified from the established PointPillars object detection network by 
adding dense connections between convolutional layers to promote feature fusion and extraction. 

In Case I of the experimental study, PandaSet, a publicly available large-scale autonomous driving 
dataset, was adopted for network training and testing. Three performance metrics, including the 
Precision, Recall, and F1 score, are employed to quantitatively evaluate the network performance on 
vehicle object detection. In addition to the proposed CNN, two extensively adopted object detection 
networks, PointPillars and YOLOv4, are also implemented in the experimental study for cross-
comparison. The training and testing results show that the proposed CNN, PointPillars, and YOLOv4 are 
capable of achieving good detection performance on the autonomous driving dataset; moreover, the 
proposed CNN outperforms the other two CNNs on the autonomous driving dataset with an 
improvement of 7.0% and 2.7%, respectively, measured by the F1 score. In Case II, roadside LiDAR data 
were collected at an intersection in Reno, Nevada, the U.S, for performance evaluation. The trained 
CNNs from Case I were further utilized to make predictions on the captured roadside LiDAR data. It is 
shown that the proposed CNN yields higher F1 scores on the roadside LiDAR data than PointPillars and 
YOLOv4, indicating the best detection performance. Another observation from Case II is that the 
detection performance of all the three CNNs is slightly deteriorated compared to that in Case I, caused 
by the impact of different data features and characteristics between the autonomous driving data and 
roadside LiDAR data. By comparing Case I and Case II, the feasibility of reusing pre-trained CNNs on 
autonomous driving data for vehicle detection from roadside LiDAR data has been validated with real-
world data. 

The proposed methodology may have difficulties detecting vehicles under data occlusion. For example, 
when making predictions on consecutive frames, some vehicle objects occluded by other objects may 
not be continuously detected by the proposed CNN due to the issue of data occlusion.  

Some future research efforts can be devoted to 1) improving the detection performance by refining the 
proposed CNN architecture to achieve more effective and efficient feature fusion and extraction; 2) 
developing effective strategies through data fusion to reduce false-negative detections due to data 
occlusion. 
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CHAPTER 4. DEEP LEARNING-BASED PEDESTRIAN TRAJECTORY PREDICTION AND RISK 
ASSESSMENT AT SIGNALIZED INTERSECTIONS USING TRAJECTORY DATA CAPTURED 

THROUGH ROADSIDE LIDAR 

In recent years, rapid advancements in the Autonomous Vehicles (AVs) industry have greatly motivated 
the research and development in pedestrian trajectory prediction and risk assessment. One of the 
critical requirements for AVs is to predict the future trajectories of pedestrians and provide collision 
warnings in an accurate and prompt manner. Nevertheless, accurate prediction of pedestrian 
trajectories remains a technical challenge, mainly caused by the heterogeneity of pedestrian crossing 
behavior and uncertainties in vehicle-pedestrian interactions. 

In this chapter, we propose a deep learning-based method for pedestrian trajectory prediction and risk 
assessment, using trajectory data extracted from roadside LiDAR data and corresponding signal phasing 
information at MLK and Georgia Avenue in Chattanooga, TN. Meanwhile, a set of criteria referred to as 
the risk factor is established to quantitatively evaluate the risk of the pedestrian crossing behavior, 
which also serves as a learnable feature. A Long Short-Term Memory (LSTM) network is proposed, which 
takes the following data as the input: the pedestrian trajectory data, signal phasing data, and risk factors 
from the past 10 steps. Meanwhile, the network predicts the pedestrian trajectory and risk factor at the 
future time step. In the experimental study, the root-mean-square errors between the predicted and 
ground truth x and y coordinates are 0.225 meters and 0.377 meters, respectively, and the F1 score 
value for the risk factor is 99.6%, demonstrating the efficacy of the proposed LSTM-based methodology 
on pedestrian trajectory prediction and risk assessment.  

4.1. Background 

In the past decade, technological advancements in artificial intelligence, smart sensing, digital signal 
processing, and high-performance computing have extensively promoted the development of the 
Autonomous Vehicles (AVs) industry (Ridel et al., 2018, Sighencea et al., 2021a). As more AVs operate in 
urban traffic scenarios, safety concerns have arisen, especially for vulnerable road users (VRUs) such as 
pedestrians and cyclists. The ability to timely and precisely detect, classify, and predict pedestrian 
crossing behavior has become a crucial factor and prerequisite for AVs to manage vehicle-pedestrian 
interactions and avoid/mitigate collision risks, thus improving road safety (Ahmed et al., 2019). 
However, pedestrian trajectory prediction remains a technical challenge in the existing literature due to 
multiple factors such as the heterogeneity of pedestrian behavior patterns, uncertainties in vehicle-
pedestrian interactions, impacts from traffic signals, subjectivities in the judgments of “right of way”, 
and diversity of urban intersections and environment (Vizzari et al., 2015, Utriainen, 2020, Tan et al., 
2023).  

In response to this challenge, researchers and professionals have devoted extensive research efforts to 
developing pedestrian trajectory prediction methodologies using various types of data, especially vision 
data (e.g., image, video) from cameras and point cloud data from Light Detection and Ranging (LiDAR) 
scanners (Wang et al., 2017, Ridel et al., 2018, Sighencea et al., 2021a). Although vision-based and 
LiDAR-based methodologies have both demonstrated success in pedestrian trajectory prediction tasks, 
researchers have observed that LiDAR data are advantageous over vision data in the following aspects: i) 
requiring less processing power and computational cost; ii) providing more accurate range information 
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and a larger field of view; and iii) being less sensitive to the changing illumination condition (Wang et al., 
2017, Zhao et al., 2019b).  

Deep Learning (DL)-based methodologies have rapidly emerged for pedestrian trajectory prediction in 
recent years. Compared to other types of methods, DL-based methodologies can directly learn from 
data and make self-adaptations, owing to their ability to achieve a high level of feature abstraction 
through a hierarchical layout, thus mitigating the uncertainties from human intervention or prior user 
input.  

Although existing DL-based methodologies have reported certain successes, further research efforts are 
needed to fully explore the potential and feasibility of applying DL-based methodologies such as LSTM 
networks for pedestrian trajectory prediction and risk assessment tasks, especially on roadside LiDAR 
data. One observation is that the majority of the aforementioned methodologies adopted LiDAR data 
from autonomous driving scenarios for pedestrian prediction, but very few utilized roadside LiDAR Data 
for analysis. This may be partly owing to the lack of roadside LiDAR datasets with well-labeled 
pedestrian and vehicle trajectory data. Roadside LiDAR data have several different features and data 
characteristics than autonomous driving data, such as sensor-to-object distance and object occlusion 
(Zhou et al., 2022). Such discrepancies may lead to different feature representations of vehicle-
pedestrian interactions and their corresponding motion patterns. Besides, most of the existing 
methodologies based on LSTM only adopted spatial information such as the location, velocity, and yaw 
angle of pedestrian or vehicle objects as the input, but they barely took advantage of temporal 
information such as the Signal Phasing and Timing (SPaT) data which could also be utilized to infer the 
pedestrian behavior. Moreover, the aforementioned DL-based methodologies did not explore the 
feasibility of incorporating risk assessment into the formulation of their LSTM network architectures. 

In this chapter, we propose a DL-based methodology based on LSTM to perform pedestrian trajectory 
prediction and risk assessment, using pedestrian and vehicle trajectory data extracted from roadside 
LiDAR data and the associated SPaT information for sequence-based learning. The technical merits can 
be summarized as follows: 

In this chapter, the feasibility of applying LSTM networks for pedestrian trajectory prediction has been 
validated using pedestrian and vehicle trajectory data obtained from signalized road intersections. Upon 
formulating the network input and output, critical features from the trajectory data and the 
corresponding SPaT data are utilized. 

● A deep LSTM network is proposed for pedestrian trajectory prediction and risk assessment. The 
proposed network is comprised of three branches of feature extraction modules, each 
consisting of a different number of LSTM layers to extract temporal dependencies from the 
trajectory and SPaT data. The extracted features are then integrated through feature-level 
fusion by the network. The experimental study demonstrates that the proposed network 
architecture can adequately adapt to the trajectory data and yield high accuracy in pedestrian 
trajectory prediction and risk assessment. 

● A set of criteria is established to quantitatively evaluate the risk of pedestrian crossing behavior 
at each time step, referred to as the risk factor. The risk factor is also incorporated into the 
network input and output sequence data. Thus, the proposed methodology can provide 
quantitative risk assessment for each pedestrian at the future time step and meanwhile predict 
their future trajectories. 
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4.2. Related Work 

In the recent decade, the vigorous development of LiDAR sensing technology has led to a drastic 
increase in pedestrian trajectory prediction and risk assessment using LiDAR data or multi-sensor fusion 
data by incorporating LiDAR point cloud features with additional data sources such as video and radar 
data (Ferguson et al., 2014, Wang et al., 2017, Habibi et al., 2018, Xue et al., 2019, Zhao et al., 2019b, 
Zhao et al., 2019c). Early methodologies utilized hand-crafted dynamic functions and models such as 
Kalman filters (KFs) for pedestrian trajectory prediction (Ahmed et al., 2019, Sighencea et al., 2021a). 
Moosmann and Fraichard (2010) developed an approach to track moving objects (e.g., pedestrians) 
through multiple algorithms, including feature matching, Iterative Closest Point (ICP), Kalman filtering, 
and dynamic mapping. Azim and Aycard (2012) proposed a framework based on three-dimensional (3D) 
LiDAR data to detect, classify, and track moving objects, including pedestrians, cyclists, and vehicles, by 
using Kalman filtering for object tracking and Global Nearest Neighborhood (GNN) for data association. 
Zhao et al. (2019c) adopted a discrete Kalman filter to track pedestrian and vehicle trajectories from 
roadside LiDAR data and then trained a deep autoencoder-artificial neural network (DA-ANN) model 
using the extracted trajectory data for pedestrian crossing intention prediction. Wu et al. (2018b) 
proposed a threshold-based method for vehicle-pedestrian near-crash identification based on the 
trajectories of VRUs extracted from roadside LiDAR data. The position, velocity, and timestamp data 
from pedestrians and vehicles were considered in determining the thresholds to identify collision risks. 
Zhao et al. (2019a) proposed a probabilistic model based on the modified Naïve Bayes method to predict 
pedestrian crossing intention using pedestrian trajectory data extracted from roadside LiDAR data. By 
developing an infrastructure-based LiDAR sensing system, Zhao (2019) proposed an approach to extract 
pedestrian and vehicle trajectories through a series of feature generation procedures, including 
background filtering, object clustering, vehicle/pedestrian classification, and tracking. Wu et al. (2020b) 
proposed a pedestrian-vehicle near-crash identification method based on roadside LiDAR data. The 
trajectories of VRUs were extracted through background filtering, lane identification, object clustering, 
and object tracking. In another study on pedestrian trajectory prediction, Zhou et al. (2021) developed 
an approach based on multi-sensor fusion to extract pedestrian position and attribute properties by 
integrating the information collected from roadside LiDAR and smartphone sensors. Li et al. (2022) 
proposed a probabilistic framework to estimate the risk of pedestrian-vehicle interaction at road 
intersections using a Gaussian Process Regression (GPR) model for pedestrian trajectory prediction and 
a Random Forest model to account for different driver maneuvers and behavior. The aforementioned 
methodologies often rely on hand-crafted feature descriptors, which are expertise-intensive and may 
require prior user input (Ahmed et al., 2019). Thus, they may have difficulties achieving robust and 
consistent performance in vehicle-pedestrian-mixed scenarios with real-world complexities.  

Methodologies using the vanilla Recurrent Neural Network (RNN) and its variants such as Long Short-
Term Memory (LSTM) network and Gated Recurrent Unit (GRU) for pedestrian trajectory prediction 
have been reported in the literature (Ridel et al., 2018, Li et al., 2019, Ahmed et al., 2019). Sun et al. 
(2018a) developed a DL-based approach for pedestrian trajectory prediction from LiDAR data collected 
by mobile service robots, in which they trained a shared-triple-layer LSTM network to learn from long-
term temporal information and short-term pedestrian pose observations. Xue et al. (2019) proposed a 
methodology based on an encoder-decoder LSTM network to predict pedestrian trajectories using data 
captured by a vehicle-mounted LiDAR sensor. The encoder with a two-stream layout was designed to 
extract features from vehicle and pedestrian trajectories, which were then fused through the decoder 
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for pedestrian trajectory prediction. Besides, Zhang et al. (2021a) proposed a deep architecture based 
on Convolutional Neural Networks (CNNs) to predict pedestrian trajectories using LiDAR data captured 
in autonomous driving scenes. Zhang et al. (2022) proposed a joint detection and tracking scheme to 
predict the trajectories of moving objects, which involves two parallel procedures: the PointVoxel-RCNN 
network was employed to detect vehicle and pedestrian objects, while the Unscented Kalman Filter 
(UKF) and Joint Probabilistic Data Association Filter (JPDAF) were utilized for trajectory prediction. Wang 
et al. (2022a) developed a deep learning-based multi-sensor fusion approach to detect and track traffic 
objects. In Wang et al. (2022a), two-dimensional (2D) trajectories were predicted by the improved 
YOLOv5 network from image data and then fused with 3D trajectories from roadside LiDAR data by 
applying the improved PointRCNN network. 

4.3. Methodology 

4.3.1. Trajectory Data and Signal Phasing Data 

The roadside LiDAR datasets were collected at MLK and Georgia Avenue in Chattanooga, TN. Three 
Ouster OS1-128 LiDAR sensors with 10 Hz rotational frequency were installed on the light poles at the 
three corners of the intersection, as shown in Figure 4-1, to capture the movement of road users, 
including vehicles, pedestrians, cyclists, etc.  

 

Figure 4-1. Data collection site: (a) bird-eye view from Google Map; and (b) actual interaction scene 
from a surveillance camera. 

The captured point cloud data were processed by Seoul Robotics to generate trajectory data for 
pedestrian object recognition and tracking tasks. The 𝑥𝑥 and 𝑦𝑦 coordinates and speed of the pedestrian 
trajectories are employed as the input data for the proposed LSTM network. 

In addition to the point cloud data, Signal Phasing and Timing (SPaT) data were collected by the traffic 
control device and utilized. From the SPaT data, the timestamps associated with two signal phases, 
namely the Pedestrian Begin Walk Time (Phase 2) and Pedestrian Begin Walk Time (Phase 4), are utilized 
as the input to the LSTM network. Signal phases 2 and 4 correspond to the pedestrian “green light” 
signal status for the crosswalks along the horizontal and vertical directions. By incorporating the elapsed 
pedestrian “green light” time at each crosswalk into the input to the LSTM network, the network can 
establish a correlation between the pedestrian motion patterns and the crosswalk signal, which helps 
predict their future crossing behavior. 
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4.3.2. Problem Formulation 

Let 𝜲𝜲 = ��𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘 ,𝑢𝑢𝑘𝑘,𝑣𝑣𝑘𝑘 , 𝑜𝑜2,𝑘𝑘 , 𝑜𝑜4,𝑘𝑘, 𝑟𝑟𝑘𝑘�𝑘𝑘=𝑘𝑘𝑜𝑜−𝑁𝑁+1
𝑘𝑘𝑜𝑜 � be the observed trajectory data from step 𝑘𝑘𝑜𝑜 − 𝐹𝐹 + 1 to 

𝑘𝑘𝑜𝑜, where 𝑘𝑘𝑜𝑜 denotes the current step, 𝐹𝐹 denotes the sequence length, equal to 10; 𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘 denote the x 
and y coordinates of the pedestrian at step 𝑘𝑘, respectively; 𝑢𝑢𝑘𝑘,𝑣𝑣𝑘𝑘  denote the x and y speed of the 
pedestrian at step 𝑘𝑘, respectively; 𝑜𝑜2,𝑘𝑘, 𝑜𝑜4,𝑘𝑘 denote the elapsed time from the most recent Pedestrian 
Begin Walk Time in Phase 2 and Phase 4 to step k, respectively; 𝑟𝑟𝑘𝑘 denotes the risk factor at step 𝑘𝑘; and, 
let 𝒀𝒀 = �𝑥𝑥𝑘𝑘𝑜𝑜+1,𝑦𝑦𝑘𝑘𝑜𝑜+1, 𝑟𝑟𝑘𝑘𝑜𝑜+1� be the trajectory data and risk factor at step 𝑘𝑘0 + 1. The proposed DL-
based methodology aims to learn a regression function that maps 𝜲𝜲 to 𝒀𝒀, as expressed in (4-1): 

 Regression: 𝜲𝜲 → 𝒀𝒀 (4-1) 

4.3.3. Risk Assessment 

A binary prediction approach for risk assessment is proposed. Two criteria are established to 
quantitatively evaluate the risk of pedestrian crossing behavior at each time step, as expressed in (4-2) 
through (4-9). The first criterion in (4-6) is based on “Colliding Past/Future Trajectories”, where a 
pedestrian object is considered at risk if its distance to any vehicle object during the past or future 2 secs 
is smaller than a tolerance value and meanwhile its head-to-head speed towards the vehicle is larger 
than a tolerance value. The second criterion in (4-7) is established based on “Unexpected Pedestrian 
Behavior” to assess the collision risk of pedestrian objects using their location information; that is, a 
pedestrian object is considered at risk if it enters a pre-defined unsafe region (i.e., roadway) as 
illustrated in Figure 4-2. It is worth noting that the process to define the unsafe region is dependent on 
the position and shape of the roadways, crosswalks, and sidewalks at each road intersection, following a 
case-by-case manner, and thus it is a manual procedure. 

● Criterion 1: Collision Risk based on Colliding Past/Future Trajectories: 

The relative position of a pedestrian object (denoted as 𝑝𝑝) with respect to a vehicle object (denoted as 
ℎ) during the past or future 2 secs can be expressed as (4-2c): 

 𝑥𝑥�𝑘𝑘 = 𝑥𝑥𝑝𝑝,𝑘𝑘 − 𝑥𝑥ℎ,𝑘𝑘±2  (4-2a) 

 𝑦𝑦�𝑘𝑘 = 𝑦𝑦𝑝𝑝,𝑘𝑘 − 𝑦𝑦ℎ,𝑘𝑘±2 (4-2b) 

 �⃗�𝑎 = (𝑥𝑥�𝑘𝑘 ,𝑦𝑦�𝑘𝑘) (4-2c) 
where 𝑥𝑥𝑝𝑝,𝑘𝑘 ,𝑦𝑦𝑝𝑝,𝑘𝑘  denote the 𝑥𝑥 and 𝑦𝑦 coordinates of pedestrian 𝑝𝑝 at step 𝑘𝑘, respectively; 𝑥𝑥ℎ,𝑘𝑘±2 and 
𝑦𝑦ℎ,𝑘𝑘±2 are the 𝑥𝑥 and 𝑦𝑦 coordinates of vehicle ℎ at step 𝑘𝑘 ± 2  secs. 

Now, define a distance threshold based on the relative position as (4-3): 

 𝑑𝑑𝑘𝑘 = �1 ‖�⃗�𝑎‖ < 𝑜𝑜𝑜𝑜𝑙𝑙1
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (4-3) 

In this equation, ‖⋅‖ denotes a vector norm; 𝑜𝑜𝑜𝑜𝑙𝑙1 denotes the “safe” distance threshold between the 
pedestrian object and nearby vehicle objects, determined as 1 meter. 

Meanwhile, the relative velocity of the pedestrian object with respect to the vehicle object is expressed 
as (4-4c).  
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 𝑢𝑢�𝑘𝑘 = 𝑢𝑢𝑝𝑝,𝑘𝑘 − 𝑢𝑢ℎ,𝑘𝑘±2 (4-4a) 
 𝑣𝑣�𝑘𝑘 = 𝑣𝑣𝑝𝑝,𝑘𝑘 − 𝑣𝑣ℎ,𝑘𝑘±2 (4-4b) 

 𝑏𝑏�⃗ = (𝑢𝑢�𝑘𝑘 ,𝑣𝑣�𝑘𝑘) (4-4c) 

where 𝑢𝑢𝑝𝑝,𝑘𝑘 ,𝑣𝑣𝑝𝑝,𝑘𝑘 refer to the 𝑥𝑥 and 𝑦𝑦 speed of pedestrian 𝑝𝑝 at step 𝑘𝑘, respectively; 𝑢𝑢ℎ,𝑘𝑘±2 and 𝑣𝑣ℎ,𝑘𝑘±2 
denote the 𝑥𝑥 and 𝑦𝑦 speed of vehicle ℎ at step 𝑘𝑘 ± 2  secs, respectively. 

Similarly, a velocity threshold based on the relative position and velocity of the pedestrian object with 
respect to the vehicle object can be defined as follows: 

 
𝑒𝑒𝑘𝑘 = �1

�⃗�𝑎 ∙ 𝑏𝑏�⃗
‖�⃗�𝑎‖

> 𝑜𝑜𝑜𝑜𝑙𝑙2
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (4-5) 

where  �⃗�𝑎 and 𝑏𝑏�⃗  are the relative position and velocity vector of the pedestrian with respect to the vehicle, 
defined in (4-2c) and (4-4c), respectively; 𝑜𝑜𝑜𝑜𝑙𝑙2 denotes the “safe” relative speed threshold between the 
pedestrian object and nearby vehicle objects, determined as 5 m/s. 

By jointly considering the thresholding results from the relative position and velocity, the collision risk 
based on Colliding Past/Future Trajectories is formulated as (4-6). Note that, for each pedestrian, (4-6) is 
evaluated for all the nearby vehicle objects, to jointly determine the collision risk based on a logical “or” 
operation. 

 𝑟𝑟1,𝑘𝑘 = 𝑑𝑑𝑘𝑘 ⋅ 𝑒𝑒𝑘𝑘 (4-6) 
where 𝑟𝑟1,𝑘𝑘 refers to the risk factor at step 𝑘𝑘, calculated based on Criterion 1.  

● Criterion 2: Collision Risk based on Unexpected Pedestrian Behavior: 

 𝑟𝑟2,𝑘𝑘 = �1 (𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘) ϵ 𝑹𝑹
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (4-7) 

where 𝑟𝑟2,𝑘𝑘 denotes the risk factor at step 𝑘𝑘, calculated based on Criterion 2; 𝑹𝑹 refers to a pre-defined 
“unsafe” region (i.e., roadway) for the pedestrian object, as illustrated in Figure 4-2. In this figure, the 
pedestrian trajectory history is overlaid on the road intersection. The majority of the “green” dots fall 
into the sidewalk and crosswalk locations and therefore are considered “safe”. 

 

Figure 4-2. Illustration of the pre-defined “unsafe” region for pedestrians. 
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Thus, based on the above two criteria, the risk factor for each pedestrian at step 𝑘𝑘 can be expressed as 
(4-8). The operator “∨” represents a logical “or” operation in this equation. 𝑟𝑟𝑘𝑘 = 1 (i.e., true) indicates 
“high-risk” pedestrian crossing behavior at step 𝑘𝑘, while 𝑟𝑟𝑘𝑘 = 0 (i.e., false) indicates “safe” crossing 
behavior. 

 𝑟𝑟𝑘𝑘 = 𝑟𝑟1,𝑘𝑘  ∨  𝑟𝑟2,𝑘𝑘 (4-8) 
Furthermore, a scale factor and an offset factor are employed to transform the risk factor into non-zero 
input to the LSTM network, thus enhancing the training performance, as expressed in (4-9).  

 𝑟𝑟𝑘𝑘 = 𝑓𝑓1 ⋅ 𝑟𝑟𝑘𝑘 + 𝑓𝑓2 (4-9) 
where 𝑓𝑓1 and 𝑓𝑓2 are the scale factor and offset factor, respectively; in the experimental study, their 
values are selected as 10 and 0.5, respectively; 𝑟𝑟𝑘𝑘 denotes the modified risk factor that participates in 
the network training and testing process. 

4.3.4. Data Pre-processing 

(1) Data Normalization 

Prior to network training and testing, data normalization, as expressed in (4-10), is performed to 
regularize the input and improve network generalization over a wide range of input data. It is worth 
noting that the input data, except the risk factor, are normalized through (4-10). 

 �̅�𝑥 =
𝑥𝑥 − 𝜇𝜇
𝜎𝜎

 (4-10) 

where 𝑥𝑥 denotes the raw feature input; 𝜇𝜇 and 𝜎𝜎 are the mean and standard deviation of feature 𝑥𝑥, 
respectively, calculated on the training dataset; �̅�𝑥 refers to the normalized sequence data ready for 
network training and testing. 

(2) Data Transformation 

 
Figure 4-3. An example of the data transformation process. 

The obtained pedestrian trajectory data have varying sequence lengths. Note that the time step in each 
sequence is 0.1 secs. In this study, only the pedestrian trajectory data whose sequence lengths are 
longer than 10 are utilized for network training and testing. The selected pedestrian trajectory data are 
randomly split into training and testing datasets. Then, a data transformation procedure is applied to 
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convert the training and testing data with varying lengths into fixed-length sequence data. An illustrative 
example is provided in Figure 4-3. In Figure 4-3, the sequence length of the original data is 13. Through a 
sliding window procedure which generates consecutive sequences with length = 11 and stride = 1, the 
original sequence is transformed into 3 new observations with the same sequence length. 

(3) Generating Predictor and Response Data from Each Fixed-length Sequence 

The final step of data pre-processing is to separate the normalized fixed-length sequence data into 
predictor and response data, which serve as the network input and output, respectively. As shown in 
Figure 4-4, the predictor data are comprised of all the features from the first 10 steps of the fixed-length 
sequence data. In contrast, the response data are constructed by selecting only the x coordinate, y 
coordinate, and risk factor at the 11th step. Note that the selection of sequence length is based on prior 
knowledge. The network does not need to make predictions on the Elapsed Pedestrian Begin Walk Time 
(Phases 2 and 4) since they can be directly calculated using information from previous observations. 

 

Figure 4-4. Generating predictor and response data from each fixed-length sequence. 

4.3.5. Long Short-Term Memory (LSTM) 

The vanilla RNN may yield deteriorated performance when processing long-sequence data because of 
the “vanishing or exploding gradient” problem (Hochreiter and Schmidhuber, 1997). As a variant of RNN, 
LSTM was proposed by Hochreiter and Schmidhuber (1997), which can effectively address the problem 
by adding special units such as memory cells and gate control to model the long-term dependencies in 
the long-sequence data. The selective remember-forget mechanism in LSTM has made it well-suited for 
sequence-based prediction. An LSTM unit is comprised of a memory cell, an input gate (𝑒𝑒𝑡𝑡) [(4-11)], a 
forget gate (𝑓𝑓𝑡𝑡) [(4-12)], and an output gate (𝑜𝑜𝑡𝑡) [(4-13)], which collaboratively control the information 
flow in the LSTM unit. At time step 𝑜𝑜, the LSTM unit takes 𝑐𝑐𝑡𝑡−1 (i.e., cell state from the previous time 
step), 𝑥𝑥𝑡𝑡 (i.e., input vector from the current step), and ℎ𝑡𝑡−1 (i.e., hidden state output from the previous 
time step) as the input. It generates 𝑐𝑐𝑡𝑡 and ℎ𝑡𝑡 [(4-14) and (4-15)] which are to be used by the future time 
step. Interested readers can refer to (Hochreiter and Schmidhuber, 1997) for more detailed explanations 
and formulations on LSTM. 

 𝑒𝑒𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑚𝑚𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑚𝑚ℎ𝑡𝑡−1 + 𝑏𝑏𝑚𝑚 ) (4-11) 

 𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑥𝑥ℎ𝑡𝑡−1 + 𝑏𝑏𝑥𝑥 � (4-12) 

 𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑜𝑜𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑜𝑜ℎ𝑡𝑡−1 + 𝑏𝑏𝑜𝑜 ) (4-13) 
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 𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⊙ 𝑐𝑐𝑡𝑡−1 + 𝑒𝑒𝑡𝑡 ⊙ tanh(𝑊𝑊𝑥𝑥𝑝𝑝𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑝𝑝ℎ𝑡𝑡−1 + 𝑏𝑏𝑝𝑝) (4-14) 

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⊙ tanh(𝑐𝑐𝑡𝑡) (4-15) 

where 𝜎𝜎 denotes the sigmoid function; 𝑊𝑊 and 𝑏𝑏 are the weights and biases, respectively; 𝑥𝑥𝑡𝑡, 𝑐𝑐𝑡𝑡 and ℎ𝑡𝑡 
denote the input vector, cell state, and hidden state output at time step 𝑜𝑜, respectively; the operator ⊙ 
denotes element-wise multiplication. 

4.3.6. Proposed LSTM Network Architecture 

Figure 4-5 shows the layout of the proposed three-branch LSTM network. The proposed network 
architecture is comprised of three branches of feature extraction modules, each consisting of a different 
number of LSTM layers. A batch normalization layer (Ioffe and Szegedy, 2015) is utilized to regularize the 
input mini-batch sequence data. A dropout layer and a fully connected layer (Goodfellow et al., 2016) 
are employed at the end of each branch. The purpose of the dropout layer is to avoid model overfitting 
by randomly deactivating some neuron input by a probability (i.e., dropout factor) (Srivastava et al., 
2014). Then, the fully connected layer condenses the input features into a 3x1 vector. At the end of the 
fully connected layers, the extracted features from each branch are integrated through feature-level 
fusion by an “addition” operation. The proposed three-branch architecture design allows the network to 
adapt to the training data and adequately reflect the data complexity by tuning the weights in each 
branch through training. Finally, the regression layer calculates the half-mean-square-error loss between 
the ground truth and predicted response data. In Figure 4-5, the number inside the parentheses in each 
LSTM layer indicates the dimension of the hidden state output in that LSTM layer. 

 
Figure 4-5. Proposed three-branch LSTM network for pedestrian trajectory prediction and risk 

assessment. 
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4.4. Experimental Study and Results 

4.4.1. Dataset Generation 

The pedestrian trajectory data are normalized and then randomly split into training and testing datasets, 
following a ratio of 90%:10%. Then, by applying the aforementioned data transformation procedure to 
the training and testing datasets, the pedestrian trajectory data with varying sequence lengths in each 
dataset are transformed into more sequence data with a fixed sequence length. Finally, the fixed-length 
sequence data are separated into the predictor and response data (see Figure 4-4) for network training 
and testing purposes. Table 4-1 tabulates the total number of training and testing data. 

Table 4-1. Training and testing datasets. 

Dataset name Number of predictor data  
(dimension: 5×10) 

Number of response data  
(dimension: 3×1) 

Training 52,000 52,000 
Testing 5,635 5,635 

 

4.4.2. Experimental Setup 

(1) Computing Environment 

The network implementation, training, and testing are accomplished using MATLAB (MATHWORKS, 
2022) deep learning toolbox and LiDAR toolbox, with the computer specifications as follows: CPU: Intel 
Xeon Gold 6254 @ 3.10 GHz; GPU: Nvidia RTX Quadro 8000 with 48 GB RAM. 

(2) Hyperparameter Configuration 

On training the LSTM network, the stochastic gradient descent with momentum algorithm (Bengio, 
2012) is adopted as the optimization algorithm. The values for the training hyperparameters are as 
follows: mini-batch size (1000), number of epochs (100), initial learning rate (0.02), learning rate drop 
period (10 epochs), learning rate drop factor (0.2), weight decay factor (0.0001), momentum (0.9), 
dropout factor (0.5). 

(3) Network Parameter Initialization 

The weights are initialized using the Glorot initializer (Glorot and Bengio, 2010), which randomly draws 
samples from a Gaussian distribution with zero mean and a variance based on the dimension of the 
weights. The initial biases are all set as zeros. In the batch normalization layer, the initial scale factor and 
shift factor are equal to one and zero, respectively. 

4.4.3. Performance Metrics 

(1) Root-Mean-Square-Error (RMSE) 

This study uses the Root-Mean-Square-Error (RMSE) to measure the discrepancy between the predicted 
and ground truth coordinate data evaluated on the testing dataset. The expression of RMSE is provided 
in (4-16). 
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RMSE = ��
(𝑔𝑔𝑚𝑚 − 𝑝𝑝𝑚𝑚)2

𝑛𝑛

𝑚𝑚

𝑚𝑚=1

 (4-16) 

where 𝑛𝑛 denotes the total number of responses in the testing dataset, equal to 5,635; 𝑔𝑔𝑚𝑚 and 𝑝𝑝𝑚𝑚  refer to 
the ground truth and predicted coordinate data, respectively. 

4.4.4. Precision-Recall Analysis 

The precision-recall analysis (Fawcett, 2006) is adopted to evaluate the prediction accuracy in the risk 
factor quantitatively. The precision-recall analysis consists of three metrics, namely the Precision, Recall, 
and F1 score, expressed as (4-17), (4-18), and (4-19), respectively. The Precision is calculated as the 
number of true-positive detections (i.e., risk factor = 1) over the total number of positive detections; the 
Recall is equal to the number of true-positive detections divided by the total number of at-risk behavior 
(i.e., risk factor = 1); and, as a harmonic mean of the Precision and Recall, the F1 score provides a 
comprehensive measure on the accuracy in risk assessment. 

 Precision =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
 (4-17) 

 Recall =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹
 (4-18) 

 F1 =
2 ⋅ Precision ⋅ Recall
Precision + Recall

 (4-19) 

where 𝑇𝑇𝑃𝑃 (i.e., true positive) denotes the number of correctly identified at-risk behavior (i.e., risk factor 
= 1) by the network; 𝐹𝐹𝑃𝑃 (i.e., false positive) denotes the number of safe behavior (i.e., risk factor = 0) 
misidentified as at-risk, and 𝐹𝐹𝐹𝐹 (i.e., false negative) denotes the number of at-risk behavior 
misidentified as safe. 

4.4.5. Experimental Results 

The training process has gone through 100 epochs and reached convergence. The trained LSTM network 
is then utilized to predict pedestrian trajectories and their risk factors on the testing dataset. 
Subsequently, a reverse data normalization operation is performed on the predicted trajectory data to 
restore the x and y coordinates to their original scale. 

Figure 4-6 and Figure 4-7 illustrate the prediction results on the x and y coordinates of future pedestrian 
trajectories, respectively. In Figure 4-6 (a) and Figure 4-7 (a), the ground truth data are plotted against 
the predicted data; additionally, the “y = x” line is overlaid with the scatter plot; that is, if the prediction 
is “perfect”, then the data will fall on the diagonal line in the plot. Besides, the difference between the 
predicted and ground truth response data is calculated, with its histogram provided in Figure 4-6 (b) and 
Figure 4-7 (b). Meanwhile, the RMSE between the predicted and ground truth response data are 
calculated from the testing dataset and tabulated in Figure 4-6. Table 4-4 shows the confusion matrix for 
the prediction results on the risk factor, and the corresponding Precision, Recall, and F1 score values are 
provided in Table 4-3. Several observations and conclusions can be made from Figure 4-6, Figure 4-7, 
Table 4-2, Table 4-3, and Table 4-4 as follows: 
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● As can be observed from Figure 4-6 (a) and Figure 4-7 (a), the majority of the data points are 
very close to the “y = x” line, indicating very accurate prediction performance on the x and y 
coordinates. Additionally, from the histogram plots Figure 4-6 (b) and Figure 4-7 (b), it can be 
observed that the discrepancies between the predicted and ground truth coordinate data are 
quite small, where the mean (μ) and standard deviation (σ) values are as follows: μ = -0.030 
meters, σ = 0.223 meters for the x coordinate, and μ = 0.017 meters, σ = 0.377 meters for the y 
coordinate, respectively. The RMSE between the predicted and ground truth x and y coordinates 
are 0.225 meters and 0.377 meters, respectively. 

● Based on the confusion matrix in Table 4-4, the Precision, Recall, and F1 score values for the risk 
factor are 99.6%, 99.6%, and 99.6%, respectively, demonstrating high accuracy in risk 
assessment.  

● Overall, based on the experimental results, the efficacy of the proposed methodology on 
pedestrian trajectory prediction and risk assessment has been validated through real-world 
data. 

Table 4-2. RMSE between the predicted and ground truth x and y coordinates. 

 x coordinate 
(meters) 

y coordinate 
(meters) 

RMSE 0.225 0.377 
 

Table 4-3. Precision-recall analysis of the prediction results on the risk factor. 

 Precision (%) Recall (%) F1 score (%) 
Risk 
factor 

99.6 99.6 99.6 

 

 
Figure 4-6. Prediction results on the x coordinate: (a) GroundTruth vs. Prediction; and (b) histogram of 

(Prediction - GroundTruth). 
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Figure 4-7. Prediction results on the y coordinate: (a) GroundTruth vs. Prediction; and (b) histogram of 

(Prediction - GroundTruth). 

 

Table 4-4. Confusion matrix for the prediction results on the risk factor. 

  Ground Truth 
  Positive Negative 

Prediction Positive True Positive = 690 False Positive = 3 
Negative False Negative = 3 True Negative = 4939 

 

In addition to showing the scatter plots and histograms of the predicted response data over the entire 
testing dataset, Figure 4-8 selects the first 100 sequence data from the testing dataset to further 
demonstrate the network prediction performance. For the bar plots in Figure 4-8 (a), (b), and (c), the 
horizontal axis corresponds to the observation index, ranging from 1 to 100; the vertical axes refer to 
the x, y coordinates and risk factor of the pedestrian trajectory at the future time step, respectively. 
Ground truth data (blue color) are plotted together with the predicted data (orange color). A close 
match between the ground truth and predicted responses is observed from Figure 4-8, demonstrating 
very accurate prediction performance by the proposed methodology. 

Figure 4-9 illustrates an example of applying the trained LSTM network for pedestrian trajectory 
prediction and risk assessment on long-sequence data (length = 454). The prediction is performed 
iteratively by cropping the original data into fixed-length sequences, which serve as the input for the 
network. Figure 4-9 (a) plots the x coordinate, y coordinate, and risk factor of the pedestrian trajectory, 
respectively. Note that the predicted risk factor illustrated in the plot represents a probability value 
between 0 and 1 rather than a binary number (i.e., 0 or 1) used in the quantitative performance 
evaluation. Furthermore, a bird-eye view of the pedestrian trajectory is displayed in Figure 4-9 (b). 
Figure 4-9 shows the ground truth and predicted response data in black and red colors, respectively. It 
can be observed from the time history plots in Figure 4-9 (a) and the bird-eye-view plot in Figure 4-9 (b) 
that the trained LSTM network yields very accurate prediction on the x and y coordinates, where the 
predicted coordinates match very well with the ground truth data. Meanwhile, from Figure 4-9 (a), it can 
be seen that the proposed network can accurately predict the risk factor as well. 
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Figure 4-8. Demonstration of the prediction results on the first 100 sequences: (a) x coordinate; (b) y 
coordinate; and (c) risk factor. 

 

Figure 4-9. Demonstration of the prediction result on long-sequence data: (a) x coordinate, y coordinate, 
and risk factor; and (b) bird-eye view of the trajectory. 

4.5. Summary 

In this chapter, we proposed a Deep Learning (DL)-based methodology utilizing LSTM for pedestrian 
trajectory prediction and risk assessment. The proposed methodology leverages the trajectory data 
extracted from roadside LiDAR data and the corresponding signal phasing information to learn temporal 
dependencies between sequence data. In addition, risk assessment of pedestrian crossing behavior is 
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incorporated into the proposed methodology by establishing two criteria, namely the collision risks 
based on “Colliding Past/Future Trajectories” and based on “Unexpected Pedestrian Behavior”, 
respectively. The risk factor at each time step is evaluated from the two criteria and further 
incorporated into the input and output of the LSTM network. 

The proposed LSTM network contains three branches of feature extraction modules, each consisting of a 
different number of LSTM layers to extract temporal dependencies from the input data. The extracted 
features are then integrated through feature-level fusion by the network. The proposed LSTM network 
takes the following features from the past 10 steps as the input: i) the coordinate and speed data from 
pedestrian trajectories, ii) Signal Phasing and Timing (SPaT) data, and iii) risk factors. Meanwhile, the 
network makes predictions on the x, y coordinates and the risk factor at the future time step. 

In the experimental study, roadside LiDAR data and SPaT data were collected at MLK and Georgia Ave in 
Chattanooga, TN, under complex traffic scenarios. Pedestrian trajectory data, SPaT data, and risk factors 
were generated and pre-processed through a series of procedures, including data normalization, data 
transformation, and dataset generation. In total, 52,000 fixed-sequence data participated in network 
training and 5,635 in testing, respectively. The RMSE values between the predicted and ground truth x 
and y coordinates calculated from the testing dataset are 0.225 meters and 0.377 meters, respectively, 
indicating high accuracy in trajectory prediction. Meanwhile, the F1 score value for the risk factor is 
99.6%, which shows that the proposed methodology can achieve very accurate risk assessment as well. 
Thus, the experimental study has validated the efficacy of the proposed LSTM-based methodology for 
pedestrian trajectory prediction and risk assessment under complex traffic scenarios using real-world 
data. 

Future research efforts need to be devoted to 1) improving the network prediction performance 
through more robust and efficient data pre-processing procedures and training schemes, and 2) 
developing LSTM encoder-decoder networks to perform long-term (output sequence > 2.5 secs) 
pedestrian trajectory prediction and risk assessment on roadside LiDAR data. 
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CHAPTER 5. OPTIMIZED LONG SHORT-TERM MEMORY NETWORK FOR LIDAR-BASED 
VEHICLE TRAJECTORY PREDICTION THROUGH BAYESIAN OPTIMIZATION 

Conventional approaches for vehicle trajectory prediction, such as Kalman filtering, usually require 
extensive user expertise or prior knowledge for parameter tuning and selection. Researchers have 
recently developed deep learning-based methodologies such as Long Short-Term Memory (LSTM) 
networks for vehicle trajectory prediction on LiDAR data. Nevertheless, challenges associated with the 
learning-based methodologies, such as human intervention and subjectivity in hyperparameter 
selection, may still exist and thus impact the prediction performance.  

This study proposes a LiDAR-based deep learning framework for vehicle trajectory prediction, which 
leverages LSTM networks to predict vehicle trajectories and Bayesian optimization to determine the 
optimal hyperparameter configuration. In the experimental study, a vehicle trajectory dataset extracted 
from roadside LiDAR data was utilized for network training and testing; the optimal LSTM network 
obtained through Bayesian optimization was compared against a benchmark LSTM network with 
handpicked hyperparameters. The results show that the proposed deep learning-based framework with 
robust hyperparameter selection through Bayesian optimization yields more accurate and consistent 
prediction performance than the benchmark network. 

5.1. Background 

In the past decade, Light Detection and Ranging (LiDAR) technology has rapidly emerged as one of the 
most popular and advanced sensing technologies for transportation research and applications, including 
Traffic Big Data (TBD) analytics, surveying, transportation system modeling and optimization, Connected 
Autonomous Vehicles (CAV), traffic object recognition and tracking, sensor fusion technologies, etc. (Sun 
et al., 2022, Mekala et al., 2021, Sighencea et al., 2021b). Compared to traditional data acquisition 
devices such as cameras, LiDAR sensors have demonstrated several significant advantages, such as 
insensitivity to changing illumination conditions, high-resolution distance measurement, wide-range 
detection, and high-speed data acquisition (Wang et al., 2017, Zhao et al., 2019b, Sun et al., 2022, Barad, 
2021). With such advantages, LiDAR sensors have been frequently deployed on mobile platforms or 
transportation infrastructures, to provide distance measurement in traffic scenarios where high-speed 
acquisition of high-quality three-dimensional (3D) data during daytime and nighttime is required, such 
as autonomous driving.  

The vigorous developments of the Autonomous Vehicles (AVs) industry in recent years have given rise to 
an ever-increasing demand for accurate and prompt perception and recognition of traffic objects, such 
as vehicles, traffic signs, obstacles, bicyclists, pedestrians, and other Vulnerable Road Users (VRUs), to 
promote transportation safety and efficiency in autonomous driving (Sun et al., 2022, Leon and 
Gavrilescu, 2021). In traffic safety analysis, vehicle detection and tracking involves obtaining the precise 
location, velocity, identity, and other critical attributes of vehicle objects from sequence data captured 
in a traffic scene (Leon and Gavrilescu, 2021). Meanwhile, vehicle trajectory prediction is focused on 
estimating vehicle objects' future motion and behavior patterns (Leon and Gavrilescu, 2021). Providing 
accurate, real-time prediction on vehicle trajectories in highly interactive traffic environments is of vital 
importance to support prompt decision-making in traffic safety analysis, including motion estimation, 
obstacle avoidance, vehicle-pedestrian interaction prediction, collision risk assessment, near-crash 
identification, etc. As the emerging LiDAR technology has proven its advantages over traditional data 
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acquisition approaches and demonstrated wide applicability in traffic scene perception, researchers 
have devoted substantial efforts to developing state-of-the-art methodologies leveraging LiDAR data for 
vehicle trajectory prediction.   

Commonly used methods for vehicle trajectory prediction, such as Kalman filters (KFs) (Xie et al., 2017, 
Lefkopoulos et al., 2020, Baek et al., 2020), Particle filters (PFs) (Hoermann et al., 2017, Fünfgeld et al., 
2017), Monte Carlo (MC) sampling (Wang et al., 2019), hidden Markov models (HMMs) (Deo et al., 2018, 
Liu et al., 2020), and Dynamic Bayesian Networks (DBNs) (Schulz et al., 2018a, Schulz et al., 2018b, Jiang 
et al., 2022), usually require establishing a motion model with handcrafted parameters to predict vehicle 
trajectories by considering the law of physics (i.e., physics-based), maneuver patterns (i.e., maneuver-
based), or the interaction between neighboring traffic objects (i.e., interaction-aware) (Lefèvre et al., 
2014, Leon and Gavrilescu, 2021). Although these classic methods have been extensively adopted for 
motion prediction tasks, they are subject to several disadvantages, as mentioned in (Leon and 
Gavrilescu, 2021). For example, their performance is sensitive to the choice of motion models and initial 
conditions, which rely heavily on a careful design and selection procedure through prior knowledge or 
trial-and-error, and thus are often expertise-intensive and subjective. 

Recent years have witnessed an ever-growing popularity of deep learning-based methods, such as 
Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), for traffic object 
recognition and motion prediction tasks, owing to the rapid advancements in high-performance 
computing devices to facilitate compute-intensive programming. By adapting to the domain-specific 
data through self-learning, deep learning-based methods can achieve hierarchical feature extraction and 
pattern recognition without the need to manually design features (Goodfellow et al., 2016).  

Long Short-Term Memory (LSTM) network is a popular deep learning-based method that has been 
extensively adopted for vehicle trajectory prediction (Leon and Gavrilescu, 2021, Huang et al., 2022). As 
a variant of RNNs, the LSTM network is designed to address the “vanishing or exploding gradient” 
problem when processing long-sequence data through the selective remember-forget mechanism in 
each LSTM unit (Hochreiter and Schmidhuber, 1997, Hochreiter, 1998). Various studies on traffic object 
recognition and motion prediction have demonstrated that LSTM networks are very suited to handling 
data with long-term dependencies (Leon and Gavrilescu, 2021).  

Nevertheless, several challenges related to LSTM-based vehicle trajectory prediction are yet to be fully 
addressed. One of the pressing challenges lies in the proper configuration of hyperparameters. The 
hyperparameters in a deep learning model refer to the parameters that determine the model 
architecture (e.g., network depth) or control the training process (e.g., learning rate). Different than the 
learnable parameters such as weights and biases, which are to be updated through gradient-based 
optimization, the hyperparameters are configured prior to network training and play a vital role in 
determining the model performance. However, in the literature, a wide variety of hyperparameter 
configurations for LSTM-based vehicle trajectory prediction have been reported, because there is 
currently no well-established strategy to determine which LSTM architecture is best suited to a 
particular task or scenario. Thus, selecting hyperparameters is often an empirical process (Leon and 
Gavrilescu, 2021). As pointed out by (Leon and Gavrilescu, 2021), in addition to a significant amount of 
appropriate data for training, deep learning-based approaches for vehicle trajectory prediction tasks 
require a careful selection of hyperparameters, which is often performed through a substantial amount 
of experimentation (e.g., grid search, random search) or trial-and-error (e.g., manual search). For 
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example, in (Kim et al., 2017, Lin et al., 2021), the hyperparameters related to the LSTM architectures 
were tuned through grid search. Overall, very few studies have explored designing a systematic 
approach to search for the optimal hyperparameter configuration to enhance the performance of deep 
learning models for vehicle trajectory prediction tasks. 

To address the challenge, in this chapter, we propose an automated and systematic framework to 
explore the optimal LSTM network performance through Bayesian optimization (Brochu et al., 2010, 
Snoek et al., 2012, Shahriari et al., 2015, Frazier, 2018) rather than relying on empirical knowledge or 
trial-and-error. The technical merit can be summarized as follows: 

● A deep learning framework based on LSTM and Bayesian optimization is proposed for vehicle 
trajectory prediction, in which the architecture- and training-related hyperparameters are 
updated during optimization. 

● The feasibility and efficacy of the proposed framework are successfully validated by comparing 
the performance between the optimal LSTM network vs. a handcrafted one, using vehicle 
trajectory data extracted from roadside LiDAR data under complex urban traffic scenarios. 

● A sensitivity analysis is performed to investigate the robustness of the proposed methodology 
subject to different levels of perturbation around the optimal hyperparameter values. 

5.2. Related Work 

In this section, popular methodologies on vehicle trajectory prediction are introduced in detail. Firstly, 
the developments and limitations of classic methods that are not deep learning-based are reviewed. 
Subsequently, the recent works of deep learning-based methods, particularly LSTM networks, are 
discussed. 

5.2.1. Classic Methods for Vehicle Trajectory Prediction 

On vehicle trajectory prediction, classic methods, such as Kalman filters (KFs) (Xie et al., 2017, 
Lefkopoulos et al., 2020, Baek et al., 2020), particle filters (PFs) (Hoermann et al., 2017, Fünfgeld et al., 
2017), Monte Carlo (MC) sampling (Wang et al., 2019), hidden Markov models (HMMs) (Deo et al., 2018, 
Liu et al., 2020), and Dynamic Bayesian Networks (DBNs) (Schulz et al., 2018a, Schulz et al., 2018b, Jiang 
et al., 2022), have been extensively adopted.  

Xie et al. (2017) developed interactive multiple model trajectory prediction using multi-source data, 
which integrates the trajectory prediction from a physics-based motion model through the Unscented 
Kalman Filter (UKF) and the prediction from a maneuver-based motion model considering uncertainty. 
Lefkopoulos et al. (2020) designed a scheme for single/multiple vehicle motion prediction based on an 
Interacting Multiple Model Kalman Filter (IMM-KF), by combining ideas from physics-based, maneuver-
based, and interaction-aware approaches. Baek et al. (2020) proposed a Kalman filter-based approach 
for vehicle trajectory prediction and collision risk assessment through multi-modal data fusion. The 
measurements from each sensor were processed through a Kalman filter and then fused to obtain the 
target state estimates. Then, trajectory prediction for the detected vehicle targets was performed by 
employing the constant turn rate and velocity (CTRV) motion model.  

Hoermann et al. (2017) designed a probabilistic motion model based on a particle filter that 
continuously estimates the driving style parameters of the Intelligent Driver Model (IDM) and the 
relational motion between traffic objects. In Hoermann et al. (2017),  the particle filter was adopted to 
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handle continuous behavior changes inter and intra driver with arbitrarily shaped parameter 
distribution. Fünfgeld et al. (2017)  developed a stochastic forecasting framework based on an 
explanatory model and stochastic processes. They proposed a hierarchic structure of random processes 
consisting of three components, including the route process, driver dynamics process, and target 
velocity process. Then, the distributions of the future vehicle dynamics were approximated through 
sequential Monte Carlo (SMC) simulation (also referred to as particle filtering) by sampling from those 
random processes.  

In a study on trajectory planning for autonomous vehicles, Wang et al. (2019) handled motion prediction 
of other traffic participants (e.g., vehicles, pedestrians, and cyclists) by adopting Monte Carlo simulation 
to predict the probability of occupancy of the other traffic participants, to let the autonomous vehicle 
avoid the area with a high probability of occupancy. They established a physics-based motion model for 
the traffic participants and leveraged Monte Carlo simulation to estimate the probability distribution of 
the moving distance of the traffic participants along the longitudinal and transverse directions. The 
probability distribution results were estimated and stored through offline processing, but they can be 
retrieved for real-time trajectory planning for autonomous vehicles. 

In another vehicle trajectory prediction study, Deo et al. (2018) leveraged an HMM for maneuver 
recognition by assigning confidence scores for surrounding vehicles’ maneuver patterns. Specifically, the 
HMM-based maneuver recognition module was trained to classify 10 different maneuver classes.  Liu et 
al. (2020) proposed a driving intention prediction method based on HMM for autonomous vehicles. 
Three HMMs were trained to take the mobility features of the target vehicle and surrounding vehicles as 
the input and categorize the driving intention into three types, namely changing to the left lane, 
changing to the right lane, and keeping on the original lane. 

Schulz et al. (2018a) proposed a behavior prediction framework to estimate possible routes and 
maneuvers of vehicles, in which they modeled the development of a traffic situation as a stochastic 
process consisting of multiple interacting agents and leveraged a DBN model to describe the stochastic 
process. Later, Schulz et al. (2018b) developed a multi-model UKF-based (MM-UKF) inference method 
with the DBN proposed in Schulz et al. (2018a) for driver intention estimation and multi-agent trajectory 
prediction. In Schulz et al. (2018b), one UKF is defined per possible combination of route and maneuver 
intentions of all agents. Jiang et al. (2022) proposed a probabilistic approach for driver intention 
estimation and vehicle trajectory prediction based on DBN, where the driver intention, maneuvering 
behavior, and vehicle dynamics were modeled and integrated probabilistically. Then, a particle filter was 
introduced in Jiang et al. (2022) to predict the vehicle trajectory and driver’s lane-changing intention. 

Although these classic methods have reported successes for handling vehicle motion prediction tasks, 
they may be subject to several disadvantages (Leon and Gavrilescu, 2021). For example, their 
performance is sensitive to the choice of motion models and initial conditions, which rely heavily on a 
careful design and selection procedure through prior knowledge or trial-and-error, and thus are often 
expertise-intensive and subjective. 

5.2.2. Deep Learning-based Methods for Vehicle Trajectory Prediction 

Kim et al. (2017) developed a framework consisting of LSTM and occupancy grid mapping to predict the 
future trajectories of vehicles using coordinate data from fused sensor measurements. Ma et al. (2019) 
proposed an LSTM-based algorithm for trajectory prediction for heterogeneous traffic agents, including 
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vehicles, pedestrians, and bicyclists. The proposed algorithm by Ma et al. (2019) consists of two 
components: an instance layer to capture the instances’ movements and interactions; and a category 
layer to learn the behavior similarities of the instances belonging to the same category. Choi et al. (2021) 
proposed a deep learning-based method using the Random Forest (RF) algorithm for lane change 
prediction and an LSTM encoder-decoder architecture for vehicle trajectory prediction. In Choi et al. 
(2021), information from Vehicle-to-Vehicle (V2V) communication, LiDAR sensor, and camera sensor 
was fused as the input data of the prediction model. Wang et al. (2021) proposed a fusion network 
architecture for vehicle trajectory prediction. The fusion network is comprised of three modules, 
including a feature extractor with Gated Recurrent Units (GRUs) and CNNs to extract information from 
fused sensor data, an attention model with two attention mechanisms to boost the temporal and spatial 
salient features during feature extraction, and an LSTM encoder-decoder architecture for trajectory 
prediction. Buhet et al. (2021) proposed a deep learning architecture to produce a probabilistic 
representation of vehicle trajectories from image and LiDAR point cloud data. For each vehicle, the 
method (Buhet et al., 2021) outputs a multivariate Gaussian mixture for a fixed number of possible 
trajectories, taking a concatenation of multi-modal features as input, which include the LSTM encoding 
on past vehicles’ trajectories, Bird-Eye-View (BEV) encoding on LiDAR point clouds, and image encoding. 
Besides, some LSTM-based studies on vehicle trajectory prediction using other modalities (e.g., image, 
radar) instead of LiDAR data have also been reported in the literature (Deo and Trivedi, 2018, Dai et al., 
2019, Xiao et al., 2020, Wang et al., 2020b, Chandra et al., 2020, Mo et al., 2020). 

In these LSTM-based studies, a wide range of hyperparameter values were selected. One of the 
challenges facing these methods is that there is no well-established strategy in the literature to 
determine which LSTM architecture is best suited to a particular task or scenario, and selecting proper 
hyperparameters is often an empirical process (Leon and Gavrilescu, 2021). For example, in Kim et al. 
(2017) and Lin et al. (2021), the hyperparameters related to the LSTM architectures were tuned through 
grid search. Overall, very few studies have explored designing a systematic approach to search for the 
optimal hyperparameter configuration to enhance the performance of deep learning models for vehicle 
trajectory prediction tasks. 

5.3. Methodology 

This section describes the proposed LSTM-based deep learning framework with Bayesian optimization 
for vehicle trajectory prediction. Firstly, the research scope and assumptions of this study are clearly 
stated. Then, the concept and formulation of Bayesian optimization are described in detail. 
Subsequently, the LSTM formulation, several candidates of the proposed LSTM architectures, and the 
hyperparameters to be updated through optimization are introduced. Lastly, the proposed objective 
function for hyperparameter tuning is formulated.  

5.3.1. Research Scope and Assumptions 

The proposed methodology leverages Bayesian optimization to explore the joint optimal configurations 
on architecture- and training-related hyperparameters for LSTM-based vehicle trajectory prediction. In 
this study, the processes to extract information from low-level features (i.e., raw LiDAR data captured 
from road intersections), including background filtering, object clustering, vehicle identification, and 
data association, are handled by the approach described in Zhao et al. (2019b). Meanwhile, the high-
level features, including the coordinate and speed data of each vehicle trajectory for network training 
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and testing, are considered to be given within this work. Thus, the scope of this study is within the task 
of vehicle trajectory prediction through deep learning, barring issues such as data occlusion during 
object detection and data association. It is worth noting that similar assumptions have been adopted in 
many other related research and successful applications (Asvadi et al., 2016, Kim et al., 2017, Schulz et 
al., 2018a, Ma et al., 2019, Chandra et al., 2020, Choi et al., 2021). 

5.3.2. Bayesian Optimization 

Instead of applying a brute-force method such as grid search to thoroughly explore the high-dimensional 
input space of the hyperparameters, which is extremely time-consuming and compute-intensive, this 
study chooses to leverage Bayesian optimization (Brochu et al., 2010, Snoek et al., 2012, Shahriari et al., 
2015, Frazier, 2018) to determine the optimal LSTM network architecture as well as the corresponding 
training configuration.  

Bayesian optimization is a powerful and efficient approach to finding the global optimum of black-box 
derivative-free functions that are expensive to evaluate. It is applicable in situations where one does not 
have a closed-form expression (i.e., black box) for the objective function but can obtain observations of 
this function at sampled values (Brochu et al., 2010). The term “expensive-to-evaluate” refers to a 
situation where the number of function evaluations is limited because each evaluation typically takes a 
substantial amount of time (Frazier, 2018). Bayesian optimization is efficient in terms of the number of 
function evaluations required, largely due to its ability to incorporate all of the information available 
from previous evaluations to help direct the sampling and to trade off exploration and exploitation of 
the search space (Brochu et al., 2010, Snoek et al., 2012). Instead of relying on local gradient and 
Hessian approximations, Bayesian optimization builds a surrogate for the objective function. It 
quantifies the uncertainty in the surrogate using a Bayesian statistical model (e.g., Gaussian Process 
regression (Rasmussen and Williams, 2006)) and then uses an acquisition function defined from the 
surrogate to determine the next sample point (Frazier, 2018). The ability and versatility of Bayesian 
optimization to optimize expensive functions have made it well suited for machine learning- and deep 
learning-based applications in interdisciplinary domains, such as tuning hyperparameters for deep 
neural networks (Snoek et al., 2012).  

Let 𝐃𝐃1:𝑡𝑡 = {𝑣𝑣1:𝑡𝑡, 𝐟𝐟1:𝑡𝑡} be the previous observations of independent and identically distributed examples 
from the sample space of the objective function. Here, the following compact notation is used for 
functions sampled at collections of input points: 𝑣𝑣1:𝑡𝑡 indicate the sample points 𝑣𝑣1, 𝑣𝑣2,⋯ ,  𝑣𝑣𝑡𝑡, each of 
which represents a set of hyperparameters; 𝐟𝐟1:𝑡𝑡 = [𝑓𝑓(𝑣𝑣1),𝑓𝑓(𝑣𝑣2),⋯ ,𝑓𝑓(𝑣𝑣𝑡𝑡)] are the observed objective 
function values. As a principled design approach in Bayesian optimization, the Gaussian Process 
(Rasmussen and Williams, 2006) is employed as a surrogate for the objective function, as expressed in 
Equation (5-1). As extensively discussed in the literature (Rasmussen and Williams, 2006, Brochu et al., 
2010, Snoek et al., 2012, Lei et al., 2021), Gaussian Process is a typical choice of the probability 
surrogate model used to fit the original objective function. It is a powerful stochastic modeling 
technique which distinguishes itself from others by its mathematical explicitness, computational 
flexibility, and tractability. Therefore, Gaussian Process has proven to be useful and well-suited to 
common optimization tasks (Mockus, 1994, Brochu et al., 2010). 

 𝑓𝑓(𝑣𝑣𝑚𝑚) = 𝑔𝑔(𝑣𝑣𝑚𝑚) + 𝜀𝜀𝑚𝑚 ,      𝑒𝑒 = 1, 2,⋯ ,𝑚𝑚 (5-1) 
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where 𝑔𝑔(𝑣𝑣) is a Gaussian Process prior, defined in Equation (5-2); 𝜀𝜀𝑚𝑚 ~ 𝒩𝒩�0,𝜎𝜎noise2 � are independent 
and identically distributed “noise” variables with independent normal distributions.  

 𝑔𝑔(𝑣𝑣) ~ 𝒢𝒢𝒢𝒢�𝑚𝑚(𝑣𝑣),𝑘𝑘(𝑣𝑣, 𝑣𝑣′)� (5-2) 
where 𝒢𝒢𝒢𝒢(∙) denotes a Gaussian Process. A Gaussian Process is analogous to a function. But, instead of 
returning a scalar 𝑓𝑓(𝑣𝑣�) for an arbitrary 𝑣𝑣�, it returns the mean and variance of a normal distribution over 
the possible values of 𝑓𝑓(𝑣𝑣�) at 𝑣𝑣�. Here, we assume a Gaussian Process prior over 𝑔𝑔(𝑣𝑣); 𝑚𝑚(𝑣𝑣) and 
𝑘𝑘(𝑣𝑣, 𝑣𝑣′) are the mean and covariance functions, respectively. Without loss of generality, we let the prior 
mean be the zero function 𝑚𝑚(𝑣𝑣) = 0; meanwhile, the automatic relevance determination (ARD) Matérn 
5/2 kernel (Snoek et al., 2012) is adopted as the covariance function 𝑘𝑘(𝑣𝑣, 𝑣𝑣′). More technical details 
regarding this kernel and the choice of covariance functions can be found in (Snoek et al., 2012). 

Now, let {𝑣𝑣𝑡𝑡+1,𝑓𝑓𝑡𝑡+1} be the new observation drawn from the same sample space, where 𝑣𝑣𝑡𝑡+1 is the next 
sample point and 𝑓𝑓𝑡𝑡+1 = 𝑔𝑔𝑡𝑡+1 + 𝜀𝜀𝑡𝑡+1. Based on the properties of Gaussian Processes, 𝐠𝐠1:𝑡𝑡 and 𝑔𝑔𝑡𝑡+1 
follow a joint multivariate Gaussian distribution, expressed as: 

 �
𝐠𝐠1:𝑡𝑡
𝑔𝑔𝑡𝑡+1�  ~ 𝒩𝒩�𝟎𝟎, � 𝐊𝐊 𝐤𝐤

𝐤𝐤𝑇𝑇 𝑘𝑘(𝑣𝑣𝑡𝑡+1,𝑣𝑣𝑡𝑡+1)�� (5-3) 

where 𝐠𝐠1:𝑡𝑡 = [𝑔𝑔(𝑣𝑣1),𝑔𝑔(𝑣𝑣2),⋯ ,𝑔𝑔(𝑣𝑣𝑡𝑡)]; the formulation of the covariance matrix 𝐊𝐊 is provided in 
Equation (5-4); 𝐤𝐤 is expressed as Equation (2-1). 

 
𝐊𝐊 = �

𝑘𝑘(𝑣𝑣1,𝑣𝑣1) ⋯ 𝑘𝑘(𝑣𝑣1,𝑣𝑣𝑡𝑡)
⋮ ⋱ ⋮

𝑘𝑘(𝑣𝑣𝑡𝑡 ,𝑣𝑣1) ⋯ 𝑘𝑘(𝑣𝑣𝑡𝑡 ,𝑣𝑣𝑡𝑡)
� (5-4) 

𝐤𝐤 = [𝑘𝑘(𝑣𝑣𝑡𝑡+1,𝑣𝑣1),𝑘𝑘(𝑣𝑣𝑡𝑡+1,𝑣𝑣2),⋯ ,𝑘𝑘(𝑣𝑣𝑡𝑡+1,𝑣𝑣𝑡𝑡) ]𝑇𝑇 (5-5) 
Similarly, from the assumption on the noise variables, the following relationship can be established:  

 �
𝛆𝛆1:𝑡𝑡
𝜀𝜀𝑡𝑡+1�~𝒩𝒩�𝟎𝟎,𝜎𝜎noise2 𝐼𝐼� (5-6) 

where 𝛆𝛆1:𝑡𝑡 = [𝜀𝜀(𝑣𝑣1), 𝜀𝜀(𝑣𝑣2),⋯ , 𝜀𝜀(𝑣𝑣𝑡𝑡)]; the noise variables 𝜀𝜀 are defined in Equation (5-1). 

The sum of independent Gaussian random processes is also Gaussian. Thus, 𝐟𝐟1:𝑡𝑡 and 𝑓𝑓𝑡𝑡+1 are jointly 
Gaussian: 

 � 𝐟𝐟1:𝑡𝑡
𝑓𝑓𝑡𝑡+1

� = �
𝐠𝐠1:𝑡𝑡
𝑔𝑔𝑡𝑡+1� + �

𝛆𝛆1:𝑡𝑡
𝜀𝜀𝑡𝑡+1�  ~ 𝒩𝒩�𝟎𝟎, � 𝐊𝐊 𝐤𝐤

𝐤𝐤𝑇𝑇 𝑘𝑘(𝑣𝑣𝑡𝑡+1,𝑣𝑣𝑡𝑡+1)�+ 𝜎𝜎noise2 𝐼𝐼� (5-7) 

From Equation (5-7), the posterior predictive distribution of 𝑓𝑓𝑡𝑡+1 [Equation (5-8)] can be characterized 
by the predictive mean [Equation (5-9)] and predictive variance [Equation (5-10)], using Bayes’ rule 
(Rasmussen and Williams, 2006). 

𝑃𝑃(𝑓𝑓𝑡𝑡+1|𝐃𝐃1:𝑡𝑡,𝑣𝑣𝑡𝑡+1) = 𝒩𝒩�𝜇𝜇(𝑣𝑣𝑡𝑡+1),𝜎𝜎2(𝑣𝑣𝑡𝑡+1) + 𝜎𝜎noise2 � (5-8) 
where the predictive mean and variance are given as: 

 𝜇𝜇(𝑣𝑣𝑡𝑡+1) = 𝐤𝐤𝑇𝑇�𝐊𝐊+ 𝜎𝜎noise2 𝐼𝐼�−1𝐟𝐟1:𝑡𝑡 (5-9) 

𝜎𝜎2(𝑣𝑣𝑡𝑡+1) = 𝑘𝑘(𝑣𝑣𝑡𝑡+1,𝑣𝑣𝑡𝑡+1) − 𝐤𝐤𝑇𝑇�𝐊𝐊 + 𝜎𝜎noise2 𝐼𝐼�−1𝐤𝐤 (5-10) 
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To guide the search for the optimum, Bayesian optimization locates the next point to evaluate by 
maximizing the acquisition function (denoted as 𝛼𝛼), which is constructed from the posterior predictive 
distribution. Under the Gaussian Process prior, the acquisition function depends on the posterior 
predictive distribution sorely through its predictive mean and predictive variance (Snoek et al., 2012). In 
this study, the Expected Improvement (EI) over the best-expected value (Brochu et al., 2010, Frazier, 
2018) is utilized as the acquisition function: 

𝛼𝛼𝐸𝐸𝐸𝐸(𝑣𝑣𝑡𝑡+1) = 𝜎𝜎(𝑣𝑣𝑡𝑡+1)�𝛾𝛾𝑡𝑡+1Φ(𝛾𝛾𝑡𝑡+1) + 𝜙𝜙(𝛾𝛾𝑡𝑡+1)� (5-11) 
where 𝛾𝛾𝑡𝑡+1 is defined by Equation (5-12); Φ and 𝜙𝜙 are the cumulative distribution function (CDF) and 
probability distribution function (PDF) of the standard normal distribution, respectively. 

 𝛾𝛾𝑡𝑡+1 =
𝜇𝜇best − 𝜇𝜇(𝑣𝑣𝑡𝑡+1)

𝜎𝜎(𝑣𝑣𝑡𝑡+1)  (5-12) 

 𝜇𝜇best = max𝑣𝑣𝑖𝑖∈𝑣𝑣1:𝑡𝑡𝜇𝜇(𝑣𝑣𝑚𝑚) (5-13) 
Thus, the task of finding the next query point to evaluate can now be accomplished via a proxy 
optimization to maximize the acquisition function, expressed as Equation (5-14): 

 𝑣𝑣𝑡𝑡+1 = argmax𝑣𝑣𝑡𝑡+1𝛼𝛼𝐸𝐸𝐸𝐸(𝑣𝑣𝑡𝑡+1) (5-14) 
Unlike the original black-box objective function, 𝛼𝛼𝐸𝐸𝐸𝐸(∙) has a closed-form expression and can be cheaply 
sampled (Brochu et al., 2010). 

5.3.3. Long Short-Term Memory (LSTM) 

In the literature, various studies have successfully applied LSTM for motion prediction tasks (Leon and 
Gavrilescu, 2021). Proposed by Hochreiter and Schmidhuber (1997), LSTM is a variant of the vanilla RNN 
designed to address the “vanishing or exploding gradient” problem from backpropagation when 
processing long-sequence data. As discussed in Kawakami (2008), LSTM has several key advantages over 
traditional methods (e.g., HMMs): 1) the constant error backpropagation within memory cells results in 
LSTM's ability to bridge very long time lags; 2) For long time lag problems, LSTM can handle noise, 
distributed representations, and continuous values; besides, it does not require a priori choice of a finite 
number of states; and 3) LSTM is very efficient, with an excellent update complexity per time step and 
weight. Various studies on traffic object recognition and motion prediction have demonstrated that 
LSTM networks are very suited to handling data with long-term dependencies (Leon and Gavrilescu, 
2021). 

A common LSTM unit is comprised of a memory cell, an input gate, a forget gate, and an output gate. 
The memory cell stores the cell state vector, which summarizes the information from the past sequence 
data. Meanwhile, the selective remember-forget gating mechanism offered by the LSTM unit through 
the input gate, output gate, and forget gate controls the information flow between the input, output, 
and cell state, allowing the network to update the cell state given new data, as illustrated in Figure 5-1. 
The formulations of LSTM are provided in Equations (5-15) through (5-20). According to the equations 
and Figure 5-1, at time step 𝑜𝑜, the LSTM unit takes the cell state from the previous step (i.e., 𝑐𝑐𝑡𝑡−1), the 
hidden state vector from the previous step (i.e., ℎ𝑡𝑡−1), and the input vector from the current step (i.e., 
𝑥𝑥𝑡𝑡) to generate the new cell state (i.e., 𝑐𝑐𝑡𝑡) and hidden state vector (i.e., ℎ𝑡𝑡), which are to be used 
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iteratively in the next time step. Interested readers can refer to (Hochreiter and Schmidhuber, 1997, 
Gers et al., 2000, Gers et al., 2002, Sherstinsky, 2020) for more technical details on LSTM. 

 

Figure 5-1. Schematic of an LSTM unit. 

 𝑒𝑒𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑚𝑚𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑚𝑚ℎ𝑡𝑡−1 + 𝑏𝑏𝑚𝑚 ) (5-15) 
 𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑥𝑥ℎ𝑡𝑡−1 + 𝑏𝑏𝑥𝑥 � (5-16) 
 𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑜𝑜𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑜𝑜ℎ𝑡𝑡−1 + 𝑏𝑏𝑜𝑜 ) (5-17) 
 𝑔𝑔𝑡𝑡 = tanh(𝑊𝑊𝑥𝑥𝑝𝑝𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑝𝑝ℎ𝑡𝑡−1 + 𝑏𝑏𝑝𝑝) (5-18) 
 𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⊙ 𝑐𝑐𝑡𝑡−1 + 𝑒𝑒𝑡𝑡 ⊙ 𝑔𝑔𝑡𝑡 (5-19) 
 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⊙ tanh(𝑐𝑐𝑡𝑡) (5-20) 

where 𝑥𝑥𝑡𝑡, 𝑐𝑐𝑡𝑡, and ℎ𝑡𝑡 denote the input vector, cell state vector, and hidden state vector at time step 𝑜𝑜, 
respectively; 𝑊𝑊 and 𝑏𝑏 denote the learnable weights and biases, respectively; 𝜎𝜎(∙) and tanh(∙) denote 
the sigmoid function, and tanh function, respectively; ⊙ denotes element-wise multiplication. 

5.4. Proposed LSTM network candidates for vehicle trajectory prediction 

To explore the impact of different architecture layouts on the prediction performance, four different 
types of LSTM network architectures with different layout types are proposed as candidates, namely the 
linear architecture, densely connected architecture, multi-branch architecture, and feature pyramid 
architecture, as illustrated in Figure 5-2, Figure 5-3, Figure 5-4, and Figure 5-5, respectively. By creating 
variations in the layout types, the proposed LSTM networks explore the efficacy of different architecture 
layouts in sequence data processing and feature extraction. The proposed LSTM network structures are 
novel designs in the sense that their layer depth and number of hidden units in each LSTM layer are 
updated during optimization, and the optimal “layout type” of the proposed LSTM network is 
determined through Bayesian optimization, too. 
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Figure 5-2. Proposed LSTM network candidate: linear architecture. 

The first network candidate, a linear architecture (see Figure 5-2), represents a simple yet 
straightforward connectivity pattern where multiple LSTM layers are sequentially connected in a feed-
forward manner for feature extraction. Note that the factors 𝑎𝑎, 𝑏𝑏, and 𝑐𝑐 in each LSTM layer, as shown in 
Figure 5-2, Figure 5-3, Figure 5-4, and Figure 5-5, are designed to collaboratively determine the number 
of hidden units in each LSTM layer, which also control the dimension of the hidden state output (i.e., ℎ𝑡𝑡) 
in Equation (5-20). In addition to the LSTM layer and fully connected layer (Goodfellow et al., 2016) for 
feature extraction, some auxiliary layers, including batch normalization (Ioffe and Szegedy, 2015, 
Santurkar et al., 2018), and dropout (Srivastava et al., 2014), are employed to regularize the input data 
and avoid overfitting. In the proposed linear LSTM architecture, the layer depth is defined as the 
number of LSTM layers, which is one of the hyperparameters participating in the optimization process. 
In this study, a mathematical relationship between the layer depth and the number of hidden units in an 
LSTM layer can be characterized as follows: 

𝑛𝑛𝑚𝑚 = 𝑏𝑏 + (𝑒𝑒 − 1) ∙ 𝑎𝑎 ∙ 𝑐𝑐 (5-21) 
where 𝑛𝑛𝑚𝑚 denotes the number of hidden units in the LSTM layer at layer 𝑒𝑒;  𝑒𝑒 denotes the layer depth; 𝑎𝑎, 
𝑏𝑏, and 𝑐𝑐 are the factors defined in Table 5-1.   

The second network candidate proposed in this study is a densely connected architecture, as illustrated 
in Figure 5-3. This type of architecture is the same as a linear architecture except that each LSTM layer in 
a densely connected architecture receives information from all preceding LSTM layers through an 
element-wise addition operation. Such a connectivity pattern is defined in (Huang et al., 2017) as a 
“dense connection”. Compared to a linear connectively pattern, the “dense connection” encourages 
feature reuse from all preceding layers with potentially fewer layers or a smaller number of hidden 
units, which alleviates the issue of “vanishing gradients” by strengthening backpropagation (Huang et 
al., 2017). In the proposed densely connected LSTM architecture, the layer depth equals the number of 
LSTM layers. 
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Figure 5-3. Proposed LSTM network candidate: densely connected architecture. 

Illustrated in Figure 5-4, the third network candidate is called a multi-branch architecture, where 
multiple branches of feature extraction modules with different number of LSTM layers (i.e., different 
layer depths) are employed. Compared to a linear feed-forward architecture, the proposed multi-branch 
architecture utilizes multiple feature extraction modules (i.e., branches) arranged parallelly to adapt to 
the input data of varying complexities. That is, when the input data embody a simple feature pattern, 
the shallow branch in the proposed multi-branch architecture will be activated during the learning 
process, thus avoiding data overfitting; as the complexity in the training data increases, the deeper 
branch then comes into action, by applying multiple LSTM layers for more sophisticated feature 
extraction. For the proposed multi-branch architecture, layer depth is the number of LSTM layers in the 
longest/deepest branch. It is also worth noting that the number of branches in the proposed multi-
branch architecture is equal to the hyperparameter “layer depth”, where the number of LSTM layers in 
each branch gradually reduces to represent different complexities of the hierarchical feature extraction 
modules, as depicted in Figure 5-4. 

 

Figure 5-4. Proposed LSTM network candidate: multi-branch architecture. 
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The fourth and last network candidate is the feature pyramid architecture, as shown in Figure 5-5. The 
term “feature pyramid” refers to the fact that the proposed architecture adopts a sophisticated 
connectivity pattern of multi-scale feature extraction, where the hierarchical features are extracted at 
different stages of feature extraction and further inherited by the subsequent LSTM layers. Judging from 
the connectivity pattern for feature exploitation, the proposed feature pyramid architecture can be 
considered a hybrid of the proposed linear, densely connected, and multi-branch architectures. Note 
that the layer depth is defined as the number of LSTM layers in the longest branch, as illustrated in 
Figure 5-5. 

 

 

Figure 5-5. Proposed LSTM network candidate: feature pyramid architecture. 

The proposed LSTM networks utilize the 𝑥𝑥 and 𝑦𝑦 coordinate and speed data of a single vehicle trajectory 
from the past 20 frames (i.e., equal to 2 seconds) as the input and then predict the 𝑥𝑥 and 𝑦𝑦 coordinates 
at the future timestep. In another word, the task of the proposed LSTM networks is to perform 
sequence-to-one regression. Note that some other research, such as (Chang et al., 2019, Buhet et al., 
2021, Choi et al., 2021), also adopted 2 seconds as the observation time on the past trajectories for 
analysis. Besides, the proposed method assumes the initial condition (i.e., the first 20 frames of the 
vehicle trajectory) is given.  

5.5. Hyperparameters 

In constructing the proposed LSTM network candidates, 7 hyperparameters are considered the most 
critical factors that govern the network performance, as defined in Table 5-1. As explained previously, 
the first hyperparameter to be updated is the layout type of the proposed LSTM candidates, which 
consists of four options: “linear”, “densely connected”, “multi-branch”, and “feature pyramid”. The 
second hyperparameter is the layer depth. In both the linear and densely connected architectures, their 
layer depths are equal to the number of LSTM layers; in both the multi-branch and feature pyramid 
architectures, their layer depths are equal to the number of LSTM layers in the longest/deepest branch, 
as illustrated in Figure 5-4 (layer depth = 3) and Figure 5-5 (layer depth = 4). The third, fourth, and fifth 
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hyperparameters are designed to collaboratively determine the number of hidden units in the LSTM 
layers. Specifically, factor 𝑏𝑏 used in each LSTM layer defines a base value for the number of hidden units, 
and factor 𝑐𝑐 further assigns a range of variation in the base value. Factor 𝑎𝑎 is the “variation pattern” 
whose data range is [-1, 0, 1]. When 𝑎𝑎 = 1, the network embodies an “ascending” pattern in the 
number of hidden units used in the LSTM layers, meaning that when the layer depth increases, the 
number of hidden units in the LSTM layer increases accordingly. Similarly, 𝑎𝑎 = −1 means a 
“descending” pattern in the number of hidden units in the LSTM layers; 𝑎𝑎 = 0 corresponds to no 
variation in the number of hidden units. It is worth noting that the hyperparameters described above 
are all related to the network architecture. 

Table 5-1. Hyperparameters to be updated in the optimization process. 

Name Related to Type Range 
Layout type Architecture Categorical Linear, 

densely connected,  
multi-branch, 
feature pyramid 

Layer depth Architecture Integer 3, 4, 5 
Factor  𝒂𝒂 Architecture Integer -1, 0, 1 
Factor  𝒃𝒃 Architecture Integer [900, 1600] 
Factor  𝒄𝒄 Architecture Integer [100, 200] 
Learning rate Training Real [0.001, 0.05] 

 

The sixth and seventh hyperparameters under consideration are the learning rate and momentum 
(Goodfellow et al., 2016), respectively, related to the training configuration. The learning rate is one of 
the most critical factors in network training because it controls convergence (Goodfellow et al., 2016). A 
large learning rate may cause undesirable divergent behavior, reducing the generalization accuracy. 
Conversely, a small learning rate may cause the network to progress slowly in updating the weights, 
ending with a slower convergence. Thus, properly selecting the learning rate is crucial to promoting 
network performance during training. The momentum (Goodfellow et al., 2016) is a hyperparameter 
employed by the Stochastic Gradient Descent with momentum algorithm (Bengio, 2012, Bottou, 2012) 
for gradient-based supervised learning. The name momentum derives from a physical analogy, in which 
the negative gradient is a force moving a particle through parameter space, according to Newton’s laws 
of motion (Goodfellow et al., 2016). During network training, the momentum controls the convergence 
rate by introducing inertia (i.e., information from the previous step) in a direction of the search space, 
thus allowing a faster convergence. 

The other hyperparameters, such as the dropout factor, are considered less important and not updated 
through Bayesian optimization but rather determined based on prior knowledge and kept as constant. 
Such a strategy helps avoid a very high-dimensional input space, especially considering that Bayesian 
optimization is best suited for optimization of fewer than 20 dimensions (Frazier, 2018).    

5.6. Objective Function 

The goal of the proposed methodology is to minimize the objective function as expressed in Equation 
(5-22), which is the sum of the Root-Mean-Square-Error (RMSE) between the ground truth and 
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predicted x and y coordinates of the vehicle trajectories, evaluated on the validation dataset. Note that 
the hyperparameter vector 𝑣𝑣 (defined in Table 5-1) serves as the direct input to the objective function; 
the intermediate input, 𝑥𝑥𝑚𝑚,𝑣𝑣

(𝑝𝑝) and 𝑦𝑦𝑚𝑚,𝑣𝑣
(𝑝𝑝), are the coordinates of the vehicle trajectories predicted by the 

LSTM network. The objective function is non-convex and does not have a closed-form expression.  

𝑓𝑓(𝑣𝑣) = �∑ �𝑥𝑥𝑚𝑚
(𝑔𝑔) − 𝑥𝑥𝑚𝑚,𝑣𝑣
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(𝑝𝑝))2𝑁𝑁

𝑚𝑚=1

𝐹𝐹
 (5-22) 

where 𝑥𝑥 and 𝑦𝑦 denote the coordinates along the horizontal and vertical directions, respectively; the 
superscripts (𝑝𝑝) and (𝑔𝑔) refer to the predicted and ground truth data, respectively; the subscript 𝑣𝑣 in 
𝑥𝑥𝑚𝑚,𝑣𝑣

(𝑝𝑝) and 𝑦𝑦𝑚𝑚,𝑣𝑣
(𝑝𝑝) means these two variables are dependent on the hyperparameter vector 𝑣𝑣 (defined in 

Table 5-1); 𝐹𝐹 denotes the number of observations in the validation dataset. An observation refers to a 
trajectory of a single vehicle object. Because this study is focused on sequence-to-one regression, each 
observation contains 20 frames of predictor data (i.e., network input) and 1 frame of response data (i.e., 
network output). 

 

Figure 5-6. Flow chart of the proposed Bayesian optimization framework. 



 

72 
 

5.7. Flow Chart of the Proposed Methodology 

To summarize, a flow chart is provided in Figure 5-6 to delineate the procedure of the proposed 
Bayesian optimization framework for hyperparameter tuning in LSTM-based vehicle trajectory 
prediction. As illustrated by Figure 5-6, the algorithm selects several initial evaluation points by 
randomly drawing samples from a uniform distribution for each hyperparameter. Subsequently, by 
incorporating the previous evaluations, Bayesian optimization updates the predictive posterior 
distribution by fitting a Gaussian Process regression model, which is further employed to construct the 
acquisition function. A proxy optimization determines the next query point by maximizing the 
acquisition function. Then, the augmented observation data are utilized to update the Gaussian Process 
regression model. Once the stopping criterion is reached, the optimal hyperparameter set and the 
corresponding network architecture can be obtained by locating the observed minimum objective 
function value throughout the optimization history. 

5.8. Experimental Study and Results 

This section presents an experimental study to validate the proposed methodology on real-world data. 
Firstly, in sections 5.8.1 and 5.8.2, data acquisition, processing, and dataset generation details are 
provided. Then, in section 5.8.3, the experimental setup process is introduced. Section 5.8.4 describes 
the performance metrics used for quantitative performance evaluation. Finally, section 5.8.5 presents 
the experimental results and discussions. 

5.8.1. Data Acquisition and Processing 

Raw LiDAR data were collected from a road intersection in Reno, Nevada, U.S., under complex urban 
traffic scenarios. As shown in Figure 5-7, a LiDAR sensor (i.e., Velodyne VLP-32C) was installed on a 
traffic light pole at a corner of the road intersection, 10 feet above the ground. Data acquisition lasted 
one hour at a rotational frequency of 10 Hz, obtaining 3D point cloud data of the surroundings. 

A series of data processing techniques, including background filtering, object clustering, object 
classification, and data association, etc., are applied to the acquired raw LiDAR data, following the 
procedures described in Zhao et al. (2019b). As mentioned in section 5.3.1, “Research scope and 
assumptions”, the high-level features, including the coordinate and speed data of each vehicle 
trajectory, are considered to be given within this work. Thus, based upon Zhao et al. (2019b), vehicle 
trajectories are extracted from real-world LiDAR data for network training and testing purposes. The 
obtained vehicle trajectories are further examined by experts and trained personnel for quality control 
purposes. 
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Figure 5-7. Sensor instrumentation. 

5.8.2. Dataset Generation 

The vehicle trajectory data are cropped into multiple observations through a sliding window. Here, each 
“observation” refers to a trajectory of a single vehicle object containing 21 frames (or 2.1 seconds). 
Because this study is focused on sequence-to-one regression, the proposed LSTM networks are designed 
to take the coordinate and speed information from the first 20 frames of each observation (i.e., 
predictor) as the input, and predict the future coordinate of the vehicle object at the 21st frame (i.e., 
response). It is worth noting that other research (Chang et al., 2019, Buhet et al., 2021, Choi et al., 2021) 
also adopted 2 seconds as the observation time on the past trajectories for analysis. In total, 136,212 
observations are obtained as the training dataset, and 15,135 observations are used for validation and 
testing, respectively. 

5.8.3. Experimental Setup 

(1) Computing hardware and software 

The experiments were performed using MATLAB 2022a (MATHWORKS, 2022) with its deep learning 
toolbox under the following hardware specifications: CPU: AMD Ryzen 9 5900HX; GPU: NVIDIA GeForce 
RTX 3080 with 16 GB memory. 

(2) Hyperparameter configuration 

Regarding the hyperparameters related to the LSTM network architecture, their values are provided in 
the parentheses as follows: dropout factor (0.5) in each dropout layer, scale factor (1), and shift factor 
(0) in each batch normalization layer. The other hyperparameters, including the layout type, layer depth, 
and the number of hidden units, are optimized through Bayesian optimization. 

The mini-batch Stochastic Gradient Descent with momentum algorithm (Bengio, 2012, Bottou, 2012) is 
adopted for training. The values for several hyperparameters related to this algorithm are determined as 
follows, based on empirical knowledge: mini-batch size (500), number of epochs (10), weight decay 
factor (0.0003). As explained previously, the optimal learning rate and momentum are determined 
through Bayesian optimization. 
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(3) Bayesian optimization configuration 

To initialize the Bayesian statistical model, 4 sample points (i.e., 𝑣𝑣1:4) are randomly drawn from the 
input space by assuming a uniform distribution for each hyperparameter (see Table 5-1), and the 
corresponding objective function values are calculated to serve as the prior observations. The stopping 
criterion for Bayesian optimization is set as 50 iterations.  

5.8.4. Performance Metrics 

The experimental study adopts the Root-Mean-Square-Error (RMSE) and the Average Displacement 
Error (ADE) for quantitative performance evaluation. The RMSE quantitatively measures the discrepancy 
between the predicted and ground truth future 𝑥𝑥 and 𝑦𝑦 coordinate data over the entire testing dataset. 
For concision, the formulation of RMSE is not provided herein. 

As a popular metric adopted by many researchers (Chandra et al., 2020, Wang et al., 2021, Chen et al., 
2021) for vehicle trajectory prediction, ADE is defined as the average distance error between the 
predicted and ground truth future position of the vehicle objects assessed over the entire testing 
dataset. The formulation of ADE is provided in Equation (5-23). The ADE metric provides a 
comprehensive evaluation by calculating the distance error. At the same time, the RMSE is used to 
assess the prediction accuracy along a single direction (i.e., 𝑥𝑥 or 𝑦𝑦).  
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where 𝐹𝐹 denotes the number of observations; 𝐿𝐿 denotes the sequence length of the future trajectory, 
equal to 1 (i.e., sequence-to-one regression); the superscripts (𝑝𝑝) and (𝑔𝑔) refer to the predicted and 
ground truth data, respectively; 𝑥𝑥 and 𝑦𝑦 denote the coordinates along the horizontal and vertical 
directions, respectively. 

5.8.5. Experimental Results 

In this section, firstly, results and discussions on Bayesian optimization are presented; then, a 
comparative study is performed to compare the performance of the optimal LSTM network obtained 
through the proposed methodology vs. a handcrafted LSTM network; subsequently, to further 
investigate the robustness of the proposed methodology, a sensitivity analysis is performed by creating 
different levels of perturbation around the optimal hyperparameter values. 

● Bayesian optimization results 

The optimization history is illustrated in Figure 5-8. In this figure, the horizontal axis refers to the 
iteration index up to 50; the vertical axis refers to the minimum objective function value evaluated on 
the validation dataset. The solid red line in Figure 5-8 represents the minimum objective function value 
observed from function evaluations. The blue dashed line represents the minimum objective function 
value estimated from the Gaussian Process regression model.  

From Figure 5-8, it can be seen that the estimated minimum objective function value matches closely 
with the observed minimum objective function value, indicating a good fit of the Gaussian Process 
regression model in each iteration. At the 49th iteration, the minimum objective function value is 
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observed [i.e., 𝑓𝑓(𝑣𝑣𝑜𝑜) = 0.945], resulting in the optimal hyperparameter configuration. The 
corresponding optimal values for the hyperparameters under investigation are tabulated in Table 5-2. It 
is worth noting that the proposed Bayesian optimization framework manages to find the optimal 
hyperparameters within 50 trials, indicating its high efficiency in terms of the number of trials required. 
On the other hand, traditional methods for hyperparameter optimization, such as grid search and 
random search, often need a much higher number of trials to find the optimal. For example, if grid 
search is employed, even just 3 possible values for each of the 7 hyperparameters would yield a total of 
37 trials, making the optimization process extremely time-consuming and impractical. 

 

Figure 5-8. Plot of the iteration index vs. minimum objective function value. 

Because the input space is a hyperspace containing 7 hyperparameters, it is not possible to visualize the 
variation pattern of the objective function value with respect to all the hyperparameters through a 
single 2D or 3D graph. Here, we choose to group the observed objective function values based on 
different hyperparameter combinations for visualization purposes and plot their marginal distribution to 
those hyperparameters, as displayed in Figure 5-9, Figure 5-10, and Figure 5-11.  

Table 5-2. Comparison of the hyperparameters of the optimal LSTM network through Bayesian 
optimization vs. the handcrafted LSTM network. 

Network Optimized through Bayesian optimization Handcrafted 
Layout type Multi-branch Multi-branch 
Layer depth 3 3 
Factor  𝑎𝑎 -1 1 
Factor  𝑏𝑏 929 1000 
Factor  𝑐𝑐 144 100 
Learning rate 0.0235 0.02 

 

To gain insights into the impact of the hyperparameters related to the LSTM network architecture, the 
number of function evaluations (i.e., 𝑧𝑧 axis) is separated into different groups and counted based on the 
layout type (i.e., 𝑥𝑥 axis) and layer depth (i.e., 𝑦𝑦 axis), as plotted in Figure 5-9. Note that in Figure 5-9, the 
height of each rectangular bar is equal to the number of function evaluations. Meanwhile, the color of 
the bar represents the average value of the objective function evaluations belonging to that bar. It is 
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clear that Bayesian optimization tends to allocate more computational resources to exploring the search 
space under the following hyperparameter combination: layer depth = 3 and layout type = “multi-
branch”, as guided by the acquisition function. Meanwhile, the corresponding color suggests that such a 
hyperparameter combination will yield relatively low objective function values, indicating better 
prediction performance. This observation is in accordance with the acquired optimal values for the 
layout type and layer depth as tabulated in Table 5-2. 

Furthermore, the objective function value is plotted against the total number of learnable parameters in 
each network, as shown by the scatter plot in Figure 5-10. In this figure, the horizontal axis is the total 
number of learnable parameters, which is jointly determined by the network layout and the number of 
hidden units in the LSTM layers [see Equation (5-21)]; the vertical axis refers to the observed objective 
function value. The results are further grouped using different markers based on their corresponding 
layout types. It can be observed that the majority of the sample points fall into the interval of [1, 
4]× 107 for the total number of parameters. This range reflects the LSTM networks' desired complexity, 
which is determined by their adaptation to the training data. Based on the Bayesian optimization result, 
the number of parameters for the acquired optimal LSTM network is equal to 2.44× 107.  

 

Figure 5-9. Histogram of the number of function evaluations with respect to the layout type and layer 
depth. 
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Figure 5-10. Scatter plot of the objective function value with respect to the total number of learnable 
parameters. 

 

Figure 5-11. Scatter plot of the objective function value with respect to the learning rate and 
momentum. 

In Figure 5-11, the observed objective function values are plotted against the hyperparameters related 
to the training process, namely the learning rate, and momentum. In this figure, the horizontal axis 
refers to the learning rate plotted in a log scale, while the vertical axis is the momentum. The objective 
function values are grouped by their layout types through different markers, and the color of each 
marker represents the corresponding objective function value. According to Figure 5-11, Bayesian 
optimization yields relatively low objective function values when the learning rate falls into the range of 
[0.01, 0.04], and meanwhile, the momentum value is within the range of [0.6, 0.8]. The optimal learning 
rate and momentum values are 0.0235 and 0.686, respectively. 

● Performance comparison between the optimal LSTM network and the handcrafted LSTM network 

Once the optimal LSTM network is obtained through Bayesian optimization, a handcrafted LSTM 
network based on prior experience is constructed for cross-comparison purposes. The hyperparameter 
configurations for the handcrafted LSTM network are also tabulated in Table 5-2. The hyperparameters 
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other than those mentioned in Table 5-2 are kept the same as the optimal LSTM network to provide a 
fair basis for cross-comparison. Then, the handcrafted LSTM network is trained and tested on the same 
datasets.  

In Figure 5-12, the RMSE between the ground truth and predicted 𝑥𝑥 and 𝑦𝑦 coordinates of the future 
trajectories in the testing dataset are illustrated. The blue bars represent the prediction result from the 
optimal network, where the RMSE values along the 𝑥𝑥 and 𝑦𝑦 directions are 0.529 and 0.416 meters, 
respectively. For the handcrafted network, the corresponding values are 1.138 and 0.519 meters, 
respectively. Thus, by adopting the proposed Bayesian optimization framework for hyperparameter 
tuning, the prediction errors on the vehicle's future 𝑥𝑥 and 𝑦𝑦 coordinates are significantly reduced. 

 

Figure 5-12. RMSE between the ground truth and predicted coordinates of the future trajectory. 

 

Figure 5-13. Histogram of the displacement error: (a) by the optimal network; and (b) by the 
handcrafted network. 
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To further demonstrate the advantage of the optimal LSTM network over the handcrafted network in 
reducing the prediction errors, the distances between the ground truth and predicted future vehicle 
position are evaluated on the testing dataset and displayed in histograms in Figure 5-13. Additionally, 
the ADE metric [see Equation (5-23)] is calculated and displayed on top of each plot in Figure 5-13. As 
can be observed, the data bins in the histogram generated by the optimal network through Bayesian 
optimization [Figure 5-13 (a)] are less spread out along the horizontal axis and more concentrated to the 
left-hand side of the plot than the results shown in Figure 5-13 (b). Furthermore, the ADE value by the 
optimal LSTM network is 0.5 meters, whereas the corresponding value for the handcrafted network is 
0.854 meters, indicating the handcrafted network has a much lower accuracy in trajectory prediction. 
Judging from the graphical results of the histogram plots and the ADE metric, it is clear that the optimal 
LSTM network obtained through the proposed Bayesian optimization framework outperforms the 
handcrafted network with improved accuracy and consistency. 

 

Figure 5-14. Example: prediction result on a long trajectory: (a) by the optimal network; and (b) by the 
handcrafted network. 

Figure 5-14 presents an example of applying the obtained optimal network and the handcrafted 
network to predict the future trajectories of a long data sequence (i.e., sequence length = 288 frames) 
for performance demonstration. The prediction process is accomplished iteratively through a sliding 
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window. In Figure 5-14, the predicted and ground truth trajectories are plotted in red and blue colors. 
By comparing the prediction results by the optimal network [Figure 5-14 (a)] vs. the handcrafted 
network [Figure 5-14 (b)], it can be observed that the handcrafted network yields a larger error in both 
the 𝑥𝑥 direction (indicated by the red arrow) and 𝑦𝑦 direction (indicated by the green circle and arrow) 
than the optimal network. Figure 5-15 depicts the prediction result at a single frame, extracted from the 
trajectories in Figure 5-14. In Figure 5-15, the ground truth and predicted vehicle position are marked by 
green circle and red cross, respectively. The prediction result is further overlaid with the corresponding 
raw point cloud data. As illustrated by Figure 5-15 (a) and (b), the predicted position by the handcrafted 
network shows a large lateral deviation from the ground truth position. In contrast, the predicted 
position by the optimal network matches well with the ground truth position, indicating more accurate 
performance. 

 

Figure 5-15. Prediction result at a single frame (overlaid with the LiDAR point cloud): (a) by the optimal 
network; and (b) by the handcrafted network. 

● Sensitivity analysis 

After Bayesian optimization, a sensitivity analysis is performed to measure the robustness of the 
proposed methodology to small changes in the optimal hyperparameter values. The following three 
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hyperparameters, including the learning rate, momentum, and the number of hidden units [see 
Equation (5-21)], are considered in the sensitivity analysis. This study adopts the one-factor-at-a-time 
(OAT) approach for sensitivity analysis, meaning only one hyperparameter is perturbated around its 
optimal value while the others remain unchanged. The formulation of the adopted OAT method is 
provided by Equation (5-24), which calculates the percentage change in the objective function value 
with respect to the percentage change in the hyperparameter value. Meanwhile, eight different levels of 
perturbation are designed, as expressed in Equation (5-25). Thus, in total, 24 subcases with different 
levels of perturbation are trained and tested. 

sensitivity =
𝑓𝑓�𝑣𝑣𝑝𝑝� − 𝑓𝑓(𝑣𝑣𝑜𝑜)
𝑓𝑓(𝑣𝑣𝑜𝑜) ∙ |Δ𝑣𝑣|  (5-24) 

Δ𝑣𝑣 ∈ [−20,−15,−10,−5,5,10,15,20] (%) (5-25) 
where 𝑓𝑓(∙) is the objective function defined in Equation (5-22); 𝑣𝑣𝑜𝑜 refers to the optimal hyperparameter 
set obtained through Bayesian optimization, as tabulated in Table 5-2; 𝑣𝑣𝑝𝑝 refers to the hyperparameter 
set by creating different levels of perturbation around the optimal point; Δ𝑣𝑣 denotes the perturbation 
level for each hyperparameter, measured by percentage. 

Figure 5-16 illustrates the ADE metric calculated on the testing dataset under different perturbation 
levels. In this figure, the horizontal axis refers to the different perturbation levels, while the vertical axis 
refers to the corresponding ADE value. Bars with blue, orange, and yellow colors represent the results 
by creating perturbation in the learning rate, momentum, and the number of hidden units, respectively. 
The black dashed line indicates the ADE value of 0.5 meters from the optimal hyperparameter setting. 
From Figure 5-16, the change in the learning rate yields the highest ADE value among the three 
hyperparameters under investigation, in almost every perturbation level. Meanwhile, it can be observed 
that a higher perturbation level in the learning rate value leads to a larger negative impact in the 
prediction performance, as measured by the ADE metric. Similar observations can be made from the 
scenarios by imposing small changes in the momentum value and the number of hidden units, but the 
increase in their ADE values is not as significant as those induced by the variation in the learning rate. 
Furthermore, by creating perturbation in the optimal hyperparameter value, the resulted ADE value 
increases in all 24 subcases, which in turn shows that the hyperparameter set optimized through the 
proposed Bayesian optimization framework reflects the optimal configuration. 

 

Figure 5-16. ADE at different perturbation levels. 
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The sensitivity at different perturbation levels is plotted in Figure 5-17, where the horizontal and vertical 
axes refer to the perturbation level and the corresponding sensitivity value, respectively. Similarly, 
based on the sensitivity plot in Figure 5-17, the proposed method is most sensitive to the changes in the 
learning rate value and least sensitive to the number of hidden units at almost every perturbation level. 
Meanwhile, it can be observed that as the perturbation level increases, the corresponding sensitivity 
value decreases for all the three hyperparameters, indicating the network performance does not 
degrade proportionally to the linear change in the optimal hyperparameter values. Specifically, in Figure 
5-17, the proposed method shows robust performance at large perturbation levels (e.g., ±20%), where 
the sensitivity to the change in the hyperparameter values is relatively low. 

 

Figure 5-17. Sensitivity of the hyperparameters at different perturbation levels. 

5.9. Summary 

In this chapter, a LiDAR-based deep learning framework was proposed for vehicle trajectory prediction, 
which consists of two components: vehicle trajectory prediction through LSTM networks; and 
hyperparameter tuning through Bayesian optimization. The proposed LSTM networks utilize the high-
level features including the coordinate and speed data of vehicle trajectories extracted from roadside 
LiDAR data to make predictions on their future trajectories. Meanwhile, to guide the search for the joint 
optimal hyperparameter configuration, Bayesian optimization is incorporated into the proposed 
framework. The following five hyperparameters related to the LSTM network architecture are tuned 
through Bayesian optimization: the layer type (i.e., “linear”, “densely connected”, “multi-branch”, and 
“feature pyramid”), layer depth, and the number of hidden units (jointly determined by the factors 𝑎𝑎, 𝑏𝑏, 
and 𝑐𝑐). Additionally, two hyperparameters related to the training process, namely the learning rate and 
momentum, also participate in the optimization process. 

In the experimental study, LiDAR data were collected from a road intersection at Reno, Nevada, U.S., 
under complex urban traffic scenarios. The obtained LiDAR data were further preprocessed to generate 
datasets for network training and testing. In the experimental study, the optimal LSTM network and its 
associated training configuration was acquired through Bayesian optimization. By cross comparing the 
prediction performance of the optimal LSTM network vs. a handcrafted LSTM network which is 
constructed based on prior knowledge, the results demonstrate that the proposed methodology is 
capable of determining the joint optimal hyperparameter configuration through optimization and lead 
to more accurate and consistent performance on vehicle trajectory prediction.  
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Furthermore, a sensitivity analysis is performed to measure the uncertainty in the network output 
subject to the uncertainty in the input hyperparameters, by creating different levels of perturbation in 
the optimal hyperparameter values. The results show that the proposed method is most sensitive to 
variations in the learning rate and least sensitive to the change in the number of hidden units, and that it 
shows robust performance when the perturbation level gradually increases.  

In the process of LiDAR data acquisition and processing, the present study does not consider the impact 
of different weather conditions or environmental factors, because the captured LiDAR data are not 
subject to drastic environmental changes. Another limitation is that the present study does not consider 
the issue of data occlusion, which could potentially deteriorate the prediction performance of the LSTM 
networks. Besides, the proposed method currently adopts roadside LiDAR data for analysis. Expanding 
its applicability to more traffic scenarios and data types (e.g., autonomous driving LiDAR data) would 
further validate the efficacy of the proposed method for LiDAR-based vehicle trajectory prediction tasks. 

Future research efforts need to be devoted to: 

● Exploring the impact of varying environmental conditions on the proposed method. 
● Considering the issues of data occlusion during object detection, data association, and 

prediction, and developing LSTM networks or other deep neural network architectures that are 
robust to data discontinuities caused by data occlusion.  

● Expanding the applicability of the proposed method on different traffic scenarios and public 
datasets.  

● Incorporating multi-modal data to further improve the accuracy and robustness of LSTM-based 
vehicle trajectory prediction. 
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CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS 

6.1. Conclusions 

Recent technological advancements in computer vision algorithms and data acquisition devices have 
greatly facilitated research activities towards enhancing traffic sensing for traffic safety performance 
improvements. Significant research efforts have been devoted to developing and deploying more 
effective technologies to detect, sense, and monitor traffic dynamics and rapidly identify crashes in 
Rural, Isolated, Tribal, or Indigenous (RITI) communities.  

As a new modality for 3D scene perception, Light Detection and Ranging (LiDAR) data have gained 
increasing popularity for traffic perception, due to its advantages over conventional RGB data, such as 
being insensitive to varying lighting conditions. In the past decade, researchers and professionals have 
extensively explored LiDAR data to promote traffic perception for transportation research and 
applications, especially in autonomous driving industry. Nevertheless, a series of challenges and 
research gaps are yet to be fully addressed in LiDAR-based transportation research, such as the 
disturbance of adverse weather conditions, lack of roadside LiDAR data for deep learning analysis, and 
roadside LiDAR-based vehicle trajectory prediction. 

This project aimed to enhance vehicle sensing for traffic safety and mobility performance improvements 
using roadside LiDAR sensor data. To fulfill this overarching goal, the following research topics have 
been investigated through this technical report: 

● Develop an effective analytical method to eliminate data outliers and noises from roadside 
LiDAR data captured under adverse weather conditions. 

● Explore the feasibility of leveraging the domain knowledge of deep learning models trained on 
autonomous driving data for vehicle detection from roadside LiDAR data. 

● Propose a novel deep learning model for vehicle trajectory prediction using positional 
information extracted from roadside LiDAR data and signal timing information. 

● Explore the optimal hyperparameter configuration of deep learning models to boost the 
performance on vehicle trajectory prediction through Bayesian optimization. 

Chapter 2 proposed a novel methodology called Dynamic Channel-wise Outlier Removal (DCOR) to de-
noise LiDAR data corrupted by snow. The proposed methodology iterates over the LiDAR data based on 
different laser channels and marks a point of interest in a channel as an outlier if the number of 
neighboring points in the same channel (within a dynamic search radius) is fewer than a threshold. 
Unlike the existing LiDAR de-noising methodologies, the proposed methodology processes LiDAR data in 
a channel-wise manner, to reduce the data dimensionality and decouple the snow effects along the 
vertical axis; furthermore, upon searching for neighboring points, the proposed methodology adopts a 
dynamically adjusted search radius which is proportional to the point-to-sensor distance, to account for 
the varying point density that decreases as the distance to sensor increases. In the experimental study, 
the proposed DCOR filter is compared against some other methodologies, including DCOR-variant1, 
ROR, DROR, SOR, and DSOR, regarding their performance on snow removal. Through the cross 
comparison, it has been demonstrated that the proposed DCOR filter outperforms the state-of-the-art 
methodologies, including DROR and DSOR, in both accuracy and efficiency, where the average F1 score 
is 98.3%, 96.4%, and 95.4%, and the execution time per frame is 0.242 secs, 2.221 secs, and 3.652 secs, 
respectively. 
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Chapter 3 proposed a methodology based on CNNs, to explore the feasibility and challenges of reusing 
CNNs trained on autonomous driving datasets for vehicle detection from roadside LiDAR data. The 
proposed CNN architecture is modified from the established PointPillars object detection network, by 
adding dense connections between convolutional layers to promote feature fusion and extraction. In 
Case I of the experimental study, PandaSet, a publicly available large-scale autonomous driving dataset, 
was adopted for network training and testing. In addition to the proposed CNN, two extensively adopted 
object detection networks, PointPillars and YOLOv4, are also implemented in the experimental study for 
cross-comparison. The training and testing results show that the proposed CNN, PointPillars, and 
YOLOv4 are capable of achieving good detection performance on the autonomous driving dataset; 
moreover, the proposed CNN outperforms the other two CNNs on the autonomous driving dataset with 
an improvement of 7.0% and 2.7%, respectively, measured by the F1 score. In Case II, roadside LiDAR 
data were collected at an intersection in Reno, Nevada, the U.S, for performance evaluation. The trained 
CNNs from Case I were further utilized to make predictions on the captured roadside LiDAR data. It is 
shown that the proposed CNN yields higher F1 scores on the roadside LiDAR data than PointPillars and 
YOLOv4, indicating the best detection performance. Another observation from Case II is that the 
detection performance of all the three CNNs is slightly deteriorated compared to that in Case I, caused 
by the impact of different data features and characteristics between the autonomous driving data and 
roadside LiDAR data.  

In Chapter 4, we proposed a deep learning-based methodology utilizing LSTM for pedestrian trajectory 
prediction and risk assessment. The proposed methodology leverages the trajectory data extracted from 
roadside LiDAR data and the corresponding signal phasing information to learn temporal dependencies 
between sequence data. In addition, risk assessment of pedestrian crossing behavior is incorporated 
into the proposed methodology, by formulating the risk factor as the input and output of the LSTM 
network architecture. In the experimental study, roadside LiDAR data and SPaT data were collected at 
MLK and Georgia Ave in Chattanooga, TN, under complex traffic scenarios. Pedestrian trajectory data, 
SPaT data, and risk factors were generated and pre-processed through a series of procedures, including 
data normalization, data transformation, and dataset generation. The RMSE values between the 
predicted and ground truth x and y coordinates calculated from the testing dataset are 0.225 meters 
and 0.377 meters, respectively, indicating high accuracy in trajectory prediction. Meanwhile, the F1 
score value for the risk factor is 99.6%, which shows that the proposed methodology can achieve very 
accurate risk assessment as well.  

Chapter 5 proposed a LiDAR-based deep learning framework for vehicle trajectory prediction, which 
leverages LSTM networks to predict vehicle trajectories and Bayesian optimization to determine the 
optimal hyperparameter configuration. The optimization scheme is designed such that both the deep 
learning model architecture and its associated training scheme are updated through Bayesian 
optimization. In the experimental study, a vehicle trajectory dataset extracted from roadside LiDAR data 
was utilized for network training and testing. The optimal LSTM network obtained through Bayesian 
optimization was compared against a benchmark LSTM network with handpicked hyperparameters. In 
the experimental study, LiDAR data were collected from a road intersection at Reno, Nevada, U.S., under 
complex urban traffic scenarios. The obtained LiDAR data were further preprocessed to generate 
datasets for network training and testing. In the experimental study, the optimal LSTM network and its 
associated training configuration was acquired through Bayesian optimization. By cross comparing the 
prediction performance of the optimal LSTM network vs. a handcrafted LSTM network which is 
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constructed based on prior knowledge, the results demonstrate that the proposed methodology is 
capable of determining the joint optimal hyperparameter configuration through optimization and lead 
to more accurate and consistent performance on vehicle trajectory prediction. Furthermore, a 
sensitivity analysis is performed to measure the uncertainty in the network output subject to the 
uncertainty in the input hyperparameters, by creating different levels of perturbation in the optimal 
hyperparameter values. The results show that the proposed method is most sensitive to variations in 
the learning rate and least sensitive to the change in the number of hidden units, and that it shows 
robust performance when the perturbation level gradually increases.  

6.2. Recommendations 

Based on the experimental studies, several practical recommendations are summarized as follows, to 
guide future similar research: 

● In Chapter 2, the optimal values for the two parameters are obtained through grid search, which 
is a straightforward but time-consuming approach. Thus, further research efforts need to be 
devoted to developing more effective parameter tuning strategies to improve the efficiency and 
robustness of the proposed noise removal methodology. 

● In Chapter 3, The proposed methodology may have difficulties detecting vehicles under data 
occlusion. For example, when making predictions on consecutive frames, some vehicle objects 
occluded by other objects may not be continuously detected by the proposed CNN due to the 
issue of data occlusion. Some future research directions are 1) improving the detection 
performance by refining the proposed CNN architecture to achieve more effective and efficient 
feature fusion and extraction; and 2) developing effective strategies through data fusion to 
reduce false-negative detections due to data occlusion. 

● Based on the observations in Chapter 4, future research is needed in the following areas, 
including 1) improving the network prediction performance through more robust and efficient 
data pre-processing procedures and training schemes; and 2) developing LSTM encoder-decoder 
networks to perform long-term (output sequence > 2.5 secs) pedestrian trajectory prediction 
and risk assessment on roadside LiDAR data. 

● For the methodology proposed in Chapter 5, the following improvements are suggested: 1) 
exploring the impact of varying environmental conditions on the proposed method; 2) 
considering the issues of data occlusion during object detection, data association, and 
prediction, and developing LSTM networks or other deep neural network architectures that are 
robust to data discontinuities caused by data occlusion; 3) expanding the applicability of the 
proposed method on different traffic scenarios and public datasets; and 4) incorporating multi-
modal data to further improve the accuracy and robustness of LSTM-based vehicle trajectory 
prediction. 
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